Американскими учеными создан робот, способный брать и исследовать кровь

«Врачи-нанороботы» — миф или реальность?

14 октября 2016

«Врачи-нанороботы» — миф или реальность?

  • 5507
  • 2,7
  • 1
  • 2

Представьте то время, когда введенные в организм человека наномашины смогут вылечить смертельные заболевания или даже приблизить бессмертие. Ученые считают, что через десятилетия это будет обычным делом. А как думаете вы?

Автор
  • Альбина Киреева
  • Редакторы
    • Антон Чугунов
    • Андрей Панов
    • «Био/мол/текст»-2016
    • Медицина
    • Нано(био)технологии

    Статья на конкурс «био/мол/текст»: В книге «Машины создания» американского ученого Эрика Дрекслера была рассмотрена идея создания наноробота как «машины по ремонту клеток», которая смогла бы ставить диагноз, передавать информацию и создавать программу для лечения человека. Конечно, это звучит очень фантастично, но ученые уверяют, что в будущем такие «машины-нанороботы» помогут людям жить вечно: они смогут предотвратить множество болезней, излечиться от уже имеющихся и таким образом приблизиться к бессмертию. То, что это вполне возможно, доказывают современные научные исследования, а вот будет ли это доступным всем — совсем другой вопрос.

    «Био/мол/текст»-2016

    Эта работа опубликована в номинации «Бионанотехнология» конкурса «био/мол/текст»-2016.

    Генеральным спонсором конкурса, согласно нашему краудфандингу, стал предприниматель Константин Синюшин, за что ему огромный человеческий респект!

    Спонсором приза зрительских симпатий выступила фирма «Атлас».

    Спонсоры публикации этой статьи — Надежда и Алексей Браже.

    Около 20 000 лет тому назад человек
    начал одомашнивать растения и животных.
    Сейчас наступило время одомашнивать молекулы.

    Сьюзан Линдквист.

    Представьте, что вы заболели обычной простудой и направляетесь к врачу за лечением, но вместо того, чтобы выписать вам таблетки или укол, он направляет вас в медицинский центр, который «запустит» в вашу кровь крошечных роботов. Они обнаружат причину заболевания, отправятся в нужную систему органов и доставят необходимую дозу лекарственного препарата непосредственно в «зону поражения». Вы удивитесь, но современная медицина не так уж и далека от таких устройств, которые уже отчасти используются. Эти специфические устройства названы нанороботами, которые создаются на основе наноэлектронных структур и биотехнологий и приобретают новые физико-химические свойства, отличающиеся от составляющих их молекул и атомов [1]. Такие нанороботы будут способны функционировать в организме человека и выполнять разнообразные функции: от контроля молекулярных и клеточных процессов до диагностики и «ремонта» организма изнутри.

    Наномедицина — что это?

    Окружающий нас мир меняется все быстрее и быстрее, и реальным становится то, что раньше было лишь вымыслом футурологов. Наномедицина и нанотехнологии коренным образом меняют взгляд человека на окружающий мир. О наномедицине, способной показывать человеку «чудеса» регенерации, решать проблемы биологического старения и многое другое, можно говорить, как о новой вехе в развитии современной науки.

    По определению Роберта Фрейтаса: «Наномедицина — это слежение, исправление, конструирование и контроль над биологическими системами человека на молекулярном уровне с использованием разработанных наночастиц и наноустройств» [2]. Возникновение наномедицины связывают с 1957 годом, когда будущий лауреат Нобелевской премии Ричард Фейнман прочитал лекцию в калифорнийском технологическом институте и произнес свою знаменитую фразу: «Внизу полным полно места» [3]. Он указал мировому сообществу, что, несмотря на фундаментальные знания о микромире, человечество не умеет использовать все свои возможности для продуктивной работы в данной отрасли. В то время его слова казались фантастикой, и мало кто мог предположить, что уже через несколько десятилетий появятся технологии, способные работать на молекулярном и атомном уровнях.

    «Молекулярные машины»

    Один из основоположников нанотехнологических разработок американский ученый Эрик Дрекслер в своих фундаментальных работах описал новую медицинскую технологию — использование «молекулярных машин». Начало развития этого направления можно связать с 1986 годом, когда Эрик Дрекслер опубликовал книгу «Машины создания. Грядущая эра нанотехнологии». Несколько позже, в 1991 году, он защитил докторскую диссертацию, а в 1992 году выпустил монографию «Наносистемы», где были изложены научные основания построения нанороботов — наномашин для ремонта клеток. По его мнению, медицинские нанороботы должны уметь диагностировать заболевания, доставлять лекарственные препараты, циркулировать в лимфатических и кровеносных сосудах человека и даже делать хирургические операции. Дрекслер предположил, что медицинские нанороботы предоставят возможность оживления людей, замороженных методами крионики [4].

    Как же создать «конструктор» из атомов и молекул?

    До сих пор не существует ни одной методики инженерного проектирования молекулярных структур в виде работоспособных крошечных роботов. Их еще предстоит разработать, но современные достижения науки настраивают на оптимизм: уже созданы моторчики диаметром 500 нм, которые могут использоваться в качестве двигателей для нанороботов , наножидкостные и наноэлектронные системы типа «лаборатории-на-чипе», разработано программное обеспечение для моделирования поведения нанороботов в организме человека. Существует практическая программа исследований, основанная Робертом Фрейтасом и Ральфом Мерклом в 2000 году и направленная на создание алмазной механосинтетической фабрики, которая будет создавать нанороботов на основе алмазных соединений [5].

    В 2016 году за разработку молекулярного двигателя Бернарду Ферринге была присуждена Нобелевская премия по химии: «Наноавтомобиль, молекулярный лифт и искусственные мышцы — названы лауреаты Нобелевской премии по химии 2016» [6]. — Ред.

    Наряду с нанороботами из алмазоидов, биоинженеры планируют активно создавать нанороботов из клеточных органелл и других биологических объектов: с митохондриями вместо аккумуляторов, миозиновыми волокнами для движения белковых жгутиков, рибосомами для синтеза необходимого белка, антителами для распознавания молекул, молекулами ферментов, вакуолями с самостоятельно синтезированным лекарственным веществом. Фактически это будет искусственно сконструированная живая клетка с заданными функциями [7], [8]. Геномика и протеомика развиваются такими темпами, что получение биологических нанороботов будет эффективным добавлением к механическим нанороботам.

    Несмотря на все достижения науки, действующие и эффективные конструкции нанороботов пока не разработаны и находятся на стадии задумок и проектирования. Есть три основных момента, на которых должны сосредоточиться ученые: навигация, питание и передвижение нанитов по кровеносным сосудам. Нанотехнологи рассматривают различные варианты для каждого из этих аспектов.

    1. Навигация нанороботов

    Внешние навигационные системы могут использовать множество различных методов, чтобы доставить наноробота в нужное место. Один из таких методов — применение ультразвуковых сигналов для обнаружения местоположения наноробота и направления его в место назначения. Врачам отправляли бы ультразвуковые сигналы в тело пациента и регистрировали их, работая на специальном оборудовании с ультразвуковыми датчиками.

    Используя магнитно-резонансную томографию (МРТ), врачи могли бы определять местонахождение наноробота и отслеживать его по магнитному полю.

    2. Питание нанороботов

    В качестве основных источников энергии предполагается использование собственных запасов непосредственно из кровотока человека. Наноробот с установленными электродами может сформировать «батарею» на основе электролитов, найденных в крови. Другой вариант заключается в создании химических реакций с кровью для превращения ее в энергию.

    Читайте также:  Будет создан электромобиль с расширенным дисплеем

    Также существует предположение по дополнению функции митохондрий глюкозным механохимическим реактором.

    3. Передвижение нанороботов

    В настоящее время уже разработано несколько нанодвигателей различных типов, которые в будущем смогут обеспечить нанороботам перемещение в пространстве. Одним из таких двигателей является диэлектрофорезный наномотор [9]. Работа двигателя построена на процессе притягивания и отталкивания частиц в сильном неоднородном электростатическом поле.

    Другой вариант нашли израильские и немецкие ученые из Технологического института Технион (Израиль), Института интеллектуальных систем Макса Планка (Германия) и Института физической химии университета Штутгарта (Германия). В статье, опубликованной в сентябрьском выпуске ACS Nano 2014 года, израильская и немецкая команда объявила, что им удалось создать крошечный винтообразный придаток, который может двигаться в гелеобразной жидкости, имитирующий окружающую среду внутри живого организма [10]. Форма нанопропеллера далека от форм пропеллеров, которые мы привыкли видеть. Исследователи придали своему нанодвигателю форму спирали, которая представляет собой закрученную нить из кварца и никеля. Ширина спирали составляет 70 нанометров, а длина — 400 нанометров. Такие размеры делают спираль нанодвигателя в 100 раз меньше диаметра клетки крови человека. При этом управление происходит за счет переменного магнитного поля, полностью исключающего какие-либо виды облучения человеческого организма. Меняя параметры данного поля, ученые регулируют направление и скорость движения механизма, доставляя его точно в заданную точку тела.

    Прототипы нанороботов

    С каждым годом микроробототехника существенно продвигается вперед. Только за последнее десятилетие в этой сфере появилось сразу несколько прорывных технологий.

    1. ДНК-нанороботы

    В 2014 году команда исследователей из Университета Бар-Илан в Израиле опубликовала статью в журнале Nature Nanotechnology, в которой продемонстрировала возможность создания нескольких нанороботов на основе нитей ДНК, которые затем были введены в организм лабораторных тараканов [11]. Эти ДНК-наноботы представляли собой свернутые особым образом и имеющие заданную последовательность молекулы ДНК, которые, попав в среду живого организма, начинали разворачиваться и взаимодействовать друг с другом и с клетками этого организма. Исследователи «размотали» нити ДНК, а затем «связали» их в новую структуру, похожую на «коробку-оригами» . В нее затем поместили по одной химической молекуле (рис. 1). При столкновении с определенными белками «ДНК-коробка» открывалась и высвобождала заключенные в изгибах ДНК химические частички, которые могли действовать согласно заложенной в них программе на процессы жизнедеятельности клеток организма или выступать в качестве лекарственных препаратов. Нанороботы были снабжены метками светящегося материала, благодаря которому было возможно определять их положение в пространстве и следить за перемещением. Во время эксперимента ДНК-нанороботы показали высокую точность функционирования и взаимодействия между собой, граничащую с точностью работы компьютерной программы.

    Рисунок 1. Робот представляет собой шестигранную призму, внутри которой спрятан «важный груз» — в данном случае, антитело, способное связываться с клетками крови тараканов. На рисунке — скриншот программы caDNAno, позволяющей моделировать структуру ДНК-оригами и подбирать необходимые для конструкции нуклеотидные последовательности.

    2. Наноробот — морской гребешок

    Ученые из Института интеллектуальных систем Макса Планка в 2014 году сконструировали необычного микроскопического робота для передвижения по жидкостям человеческого тела. Отличает его от всех прежних прототипов сходство с морским гребешком (рис. 2). Подобно этому моллюску наноробот способен передвигаться за счет движений створок «раковины» с помощью реактивной тяги. При этом роботу достаточно энергии внешнего электромагнитного поля, что позволило обойтись без источника питания и уменьшить размеры раковины [15].

    Рисунок 2. «Целебные гребешки». Такой механизм плавания нанороботов из полидиметилсилоксана открывает новые возможности в проектировании биомедицинских микроприборов.

    3. «Цинковые наноракеты»

    Исследователи из Калифорнийского университета Сан-Диего в 2015 г. создали нанороботов, способных перемещаться внутри живого организма и доставлять груз лекарственных препаратов в необходимое место, не влияя на организм [16]. Микродвигатель этих «молекулярных машин» имеет химическую природу и продвигает наноботов за счет пузырьков газа, выделяющихся в ходе реакции между жидкостью внутри организма и материалом, находящемся в двигателе (рис. 3). Подопытными живыми организмами были грызуны. Наниты, изготовленные из специального полимера, имели форму трубки длиной около 20 микрометров и диаметром 5 микрометров и были покрыты толстым слоем цинка. Нанороботы вводились в пищеварительный тракт животного и достигали его желудка, где цинк начинал реагировать с соляной кислотой, входящей в состав пищеварительных соков. Выделяющийся при этом водород вырывался из внутренней полости трубок-наноботов, превращая их в подобие миниатюрных ракет (видео 1).

    Рисунок 3. Устройство цинковых наномоторов. а — Механизм работы «цинкового мотора». б — Построение микродвигателей с помощью поликарбоната. в — Цинковые «наноракеты» под микроскопом. г — Фазы движения нанороботов.

    Видео 1. Движение созданного калифорнийскими учеными прототипа наноробота.

    Они развивали скорость около 60 микрометров в секунду, были способны покидать пределы желудка и закрепляться на стенках кишечника, где высвобождали наночастицы из лекарственных препаратов. Согласно данным, полученным в ходе эксперимента, наноботы оставались прикрепленными к стенкам кишечника в течение 12 часов, даже несмотря на прием пищи подопытным животным, что является доказательством их эффективности.

    4. «Шустрые» наниты

    Одним из последних достижений в области наноробототехники является создание исследователями из Университета Дрекселя крошечных роботов, способных развивать большую скорость в жидкой среде [17]. Нанороботы представляют собой цепочки из крошечных круглых частиц. Магнитное поле вращает частицы, подобно винту. При этом, чем длиннее цепочка, тем бóльшую скорость она может развить (рис. 4). Ученые создавали различных роботов: начиная с цепочки из трех «бусин» до цепочки из 13 частиц, которая достигала скорости 17,85 микрометра в секунду (видео 2). Движение наноботов было возможно благодаря применению внешнего магнитного поля. Чем быстрее была скорость вращения поля, тем быстрее перемещались цепочки. При этом высокая частота приводила к деформации цепочек и способствовала их разделению на более мелкие цепочки: из трех или четырех частиц. Ученые планируют использовать эти устройства в будущем для доставки лекарственных веществ по кровеносным сосудам.

    Рисунок 4. Скорость магнитных пловцов с различным количеством бусин.

    Видео 2. Нанороботы-трансформеры, созданные в Университете Дрекселя, США.

    По образу и подобию

    Какой станет медицина будущего? Как она изменит нас и наше отношение к жизни? Смогут ли «нанороботы-врачи» заменить человека? Эти вопросы звучат, как нечто фантастическое. Несмотря на то, что конструкция медицинских нанороботов существует пока в головах ученых, уже сейчас можно с гордостью говорить о достижениях нанотехологии в медицине: это и адресная доставка лекарств, и контроль биохимии процесса лечения, и диагностика заболеваний с помощью квантов, и лаборатория на чипе [18].

    Читайте также:  LG будет производить экраны для новых телевизоров Samsung

    Ожидается, что достижения в наноробототехнике станут доступными не ранее, через полвека, однако последние разработки в этой отрасли вселяют уверенность в то, что это произойдет намного раньше. Будем надеяться, что через пару веков гений человека сможет на практике использовать нанороботов в хирургических операциях, в лечении разнообразных заболеваний и, в конце концов, для оживления и «ремонта» человека [3].

    Да будет свет: хроника научных открытий, которые перевернули мир

    2 июля 1698 года — английский механик Томас Севери патентует первый паровой двигатель. Сама по себе «машина Севери» представляла собой обычный паровой насос без деталей, приводимых в движение. Однако эта разработка позволила последователям Севери внедрить в механические устройства реальные паровые двигатели.

    Первый прототип паровоза был сконструирован во Франции военным инженером Николя-Жозе Кюньо уже в 1769 году. Железнодорожные составы, первые автомобили, корабли, станки на заводах и фабриках, моторизированная сельхозтехника — все это работало на пару. Именно разработка парового двигателя дала старт промышленной революции XVIII—XIX веков.

    7 января 1839 года — физик Франсуа Араго представляет доклад о дагеротипии на заседании Французской академии наук. Эту дату принято считать днем рождения фотографии. А изобретателем метода был коллега Араго, химик Луи Жак Манде Дагер, который назвал его в свою честь. Он продемонстрировал членам академии снимок «Вид на бульвар дю Тампль» на йодисто-серебряной пластине. Метод дагеротипии заключался в проецировании камерой-обскура изображения на посеребренную медную пластину, которую предварительно обработали йодом. Серебро под действием паров йода стало светочувствительным за счет галогенидов — соединений, реагирующих на свет. В итоге получилось изображение, напоминающее гравюру.

    Фотография в наше время стала цифровой, мгновенной и тиражируемой. Она позволяет не только фиксировать события из жизни, но и широко применяется в науке. Алгоритмы искусственного интеллекта обучают на массивах снимков, их же мы получаем из космоса при отправке очередного исследовательского аппарата. Фотография стала одним из способов обмена информацией наряду с текстом.

    7 марта 1876 года — изобретатель шотландского происхождения Александр Белл получает патент на изобретение телефона. К тому моменту разработка устройства велась не один год, а занимались ею одновременно несколько исследователей в разных странах.

    Свою лепту в разработку телефона вложил и Томас Эдисон. Вместо стержня он предложил использовать в микрофонах угольный порошок.

    Первые телефоны были напрямую связаны друг с другом, но в систему быстро внедрили ручные распределительные щиты. На устройствах не было набора номера, а присутствовал рычаг, который нужно было потянуть, чтобы вызвать оператора.

    Российский военный связист Григорий Игнатьев 29 марта 1880 года первым разработал систему одновременного телеграфирования и телефонирования с разделением частот. Это позволило создавать протяженные телефонные сети.

    Сегодня телефония эволюционировала и включает не только проводной способ связи, но и сотовый, спутниковый, а также связь по IP.

    21 октября 1879 года — американский изобретатель-самоучка Томас Эдисон испытал электрическую лампу накаливания. Над ней годами работали ученые из разных стран. К примеру, в 1874 году российский инженер Александр Лодыгин запатентовал самую на тот момент жизнеспособную версию с угольным стержнем, который не плавился. Чуть позже он предложил заменить угольный стержень вольфрамовым, который используется по сей день. Однако именно Эдисон ввел лампочки в массовое использование.

    Устройства заменили тусклые керосиновые лампы и газовые горелки в домах и на производствах. Это позволило коренным образом изменить процесс работы на предприятиях и даже режим дня. Кроме того, на улицах стало светлее — а, значит, безопаснее.

    Лампочки Эдисона не имели конкурентов почти столетие, вплоть до 1976 года, когда изобретатель Эд Хаммер представил компании General Electric новый тип энергосберегающей лампы.

    29 января 1886 года — немецкий инженер Карл Бенц получает патент на первый в мире автомобиль с двигателем внутреннего сгорания. Он представлял собой трехколесный двухместный экипаж на высоких колесах со спицами. Автомобиль был оснащен бензиновым мотором с водяным охлаждением мощностью всего 0,9 л. с.

    Первый самостоятельный автопробег совершила жена Бенца Берта, которая с детьми проехала более 100 км, чтобы навестить мать. При этом машину приходилось толкать в гору, после чего Бенц задумался, чтобы спроектировать коробку передач.

    Популяризатором автомобилей по праву называют Генри Форда. Именно он поставил производство на поток и снизил себестоимость машин.

    Автомобили сделали людей мобильными. Мы начали строить трассы, развивать транспортные сети, заселять новые территории. В наше время человечество стремится к тому, чтобы освободить себя от управления автомобилем и передать его ИИ. Это небыстрый процесс, но вероятность появления на дорогах беспилотников в ближайшие годы велика.

    1 мая 1888 года — изобретатель сербского происхождения Никола Тесла получает патент на асинхронный электродвигатель и системы передачи электроэнергии посредством многофазного переменного тока. О переменном токе тогда уже знали многие, а первый прототип электродвигателя представил еще британский физик Майкл Фарадей в 1821 году.

    Патент Теслы перекупил американский бизнесмен Георг Вестингауз и запустил массовое производство двигателей. Благодаря этому в США удалось запустить целый ряд промышленных электроустановок, в том числе Ниагарскую ГЭС в 1895 году.

    Позднее разработку Теслы усовершенствовал российский инженер Михиал Доливо-Добровольский. Он сконструировал трехфазный асинхронный двигатель с ротором, который напоминает беличье колесо. Эта конструкция и лежит в основе современных двигателей.

    Сегодня двигатели — это основные преобразователи электрической энергии в механическую. Они используются на производстве и в бытовой технике — от приводов задвижек до вращения барабана в стиральной машине. Именно эти двигатели устанавливают в электромобили, о чем намекает название компании Илона Маска Tesla.

    7 мая 1895 года — российский физик Александр Попов проводит первый сеанс радиосвязи с помощью созданного им радиоприемника. Он обнаруживал излучение электромагнитных волн на расстоянии до 60 м от передатчика. В качестве антенны Попов использовал проволоку, поднятую воздушными шарами на высоту 2,5 метра. Исследователь смог передать набранные азбукой Морзе слова Heinrich Hertz (Генрих Герц) с передатчика на приемник собственной конструкции.

    Читайте также:  Samsung зарегистрировали новый патент на гибкий планшет

    Насчет появления радио мнения расходятся. В США его изобретателем считают Дэвида Хьюза, Томаса Эдисона и Николу Теслу. В Германии — Генриха Герца, который первым открыл электромагнитные волны. Многие европейские страны признают изобретателем радио итальянца Гульельмо Маркони, который на месяц опередил Попова. Официально Маркони представил свой аппарат 2 сентября 1895 года и передал с помощью него целый текст на расстояние 3 км.

    В 1940-х годах суд признал приоритет изобретения Теслы над аппаратами Маркони и Попова, так как оно могло преобразовывать радиосигнал в звук.

    Несмотря на большое количество споров о первенстве, все эти попытки передачи физического сигнала подтолкнули развитие будущих технологий связи. В наше время радио существует не только в его традиционном представлении, но и в виде продолжений: телевидения, мобильной связи, Wi-Fi.

    22 декабря 1895 года — немецкий физик Вильгельм Рёнтген делает первый в мире рентгеновский снимок человеческой руки. Незадолго до этого, 8 ноября, ученый открыл Х-лучи, которые способны проникать сквозь различные материалы. За свое открытие Рентген удостоился первой Нобелевской премии по физике в 1901 году.

    В настоящее время рентген — это важный способ диагностики в медицине. Кроме того, рентгеновские лучи широко используются в производстве: для обнаружения внутренних дефектов деталей и определения атомной структуры веществ, а также их химического состава. Они нашли применение и в системах безопасности, чтобы, к примеру, просвечивать багаж.

    17 декабря 1903 года — братья Уилбер и Орвилл Райт из США проводят первый испытательный полет своего самолета «Флайер-1». Летательный аппарат пробыл в воздухе 12 секунд, преодолев 36,5 м. «Флайер-1» представлял собой биплан с двумя рулями, в котором пилот размещался на нижнем крыле. Его винты были деревянными, а роль шасси выполняла катапульта. Двигатель имел мощность всего 16 л.с.

    Кстати, тогда этот полет прошел практически незаметно для общественности. Люди просто не верили, что будут способны покорить небо.

    В наши дни самолеты стали обычным видом транспорта. Благодаря развитию авиации теперь можно добраться практически в любую точку Земли. Кроме того, это важный элемент системы доставки грузов. Именно покорение неба зародило еще более амбициозную мечту — полететь в космос.

    28 сентября 1928 года — британский микробиолог Александр Флеминг изобретает пенициллин, который произвел революцию в медицине и по сей день считается главным антибиотиком. Все началось с того, что Флеминг заметил на пластине с изучаемыми им стафилококками плесневые грибы, которые взялись неизвестно откуда и уничтожили часть бактерий. Он отнес эти грибы к роду пеницилловых.

    В 1941 году удалось произвести эффективную дозу пенициллина, которая спасла жизнь 15-летнему подростку с заражением крови. Антибиотик позволил лечить остеомиелит и пневмонию, сифилис и родильную горячку, предотвратить развитие инфекций, а также бороться с туберкулезом. Ранее смертельные болезни перестали считаться таковыми, что повлияло и на глобальную продолжительность жизни.

    15 февраля 1946 года — широкой публике представили ENIAC, первый известный компьютер. Его сконструировали ученые Джон Преспер Эккерт и Джон Уильям Мокли в университете Пенсильвании для вычисления баллистики снарядов для американских военных во время Второй мировой войны. Первый компьютер весил 30 тонн и занимал площадь в 200 кв. м, зато мог рассчитать траекторию ракеты за 30 секунд.

    Уже в 1975 году на рынок выходит первый пользовательский ПК «Альтаир 8800» компании MITS, а в 1983 году эстафету перехватывает компактный Apple Macintosh. В 1990-е годы ПК становятся доступными практически всем.

    Сейчас, в эпоху интернета, мы не представляем свою жизнь без компьютеров. Они делают жизнь удобнее, а еще играют центральную роль в автоматизации многих процессов и в развитии производств. Новый этап — это разработка квантовых компьютеров, которые обладают огромной вычислительной мощностью. Такие устройства гипотетически смогут решать кардинально новые задачи: к примеру, вычислить, есть ли во Вселенной разумные существа.

    26 апреля 1951 года — американский физик Чарльз Таунс рисует набросок первого мазера — прибора, усиливающего микроволновые колебания с помощью вынужденного излучения. Так идея лазера, которую описывал еще Эйнштейн, начинает воплощаться в реальность.

    Первый мазер излучал с длиной волны около 1 см и генерировал мощность около 10 нВт. Большой вклад в развитие технологии внесли российские ученые Николай Басов и Александр Прохоров, которые предложили трехуровневый метод накачки мазера. Эта работа легла в основу квантовой электроники, которая стала новым направлением в физике. В 1964 году Басов, Прохоров и Таунс получили Нобелевскую премию по физике.

    В 1960 году создается первый твердотельный лазер на кристалле рубина. Устройства такого типа применялись в CD-проигрывателях и DVD-плеерах.

    Сегодня выпускаются лазеры различных типов, которые широко применяются в науке, технике, на производстве и даже в медицине. Их используют при сварке, пайке и даже в микроэлектронике. Мазеры же считаются «атомными стандартами частоты» и являются одной из форм атомных часов, применяемых в космонавтике. Они используются как микроволновые усилители с низким уровнем шума в радиотелескопах.

    15 июня 1956 года — на семинаре Дартмутского колледжа в США впервые предложили термин «искусственный интеллект». До этого, в 1951 году, уже был продемонстрирован нейрокомпьютер, который содержал 40 нейронов. Это был важный переход от идеи Тьюринга о машине, которая может реагировать на сигналы человека, к идее системы, которая самостоятельно принимает решения.

    Сегодня область исследований и применения ИИ чрезвычайно широка: это и генетические алгоритмы, и когнитивное моделирование, и интеллектуальные интерфейсы, а также наиболее широко используемые распознавание и синтез речи.

    13 июня 1961 года — американскому изобретателю Джорджу Деволу выдали патент на первого в истории промышленного робота. Механизированный манипулятор Unimate занял свое место на предприятии General Motors. Он забирал детали с линии непрерывного литья и устанавливал их внутрь автомобильных кузовов методом сварки. Внешне Unimate напоминал подвижную «руку» с захватом-клещами.

    Появление промышленных роботов ознаменовало новый этап технической революции. В наши дни роботов широко используют не только для выполнения рутинных задач на предприятиях, но даже запускают в космос. «Персеверанс», который исследует Марс — это тоже робот, снабженный захватом и множеством датчиков и камер.

    3 апреля 1973 года — глава подразделения мобильной связи Motorola Мартин Купер впервые дозвонился до абонента с сотового телефона. Протомобильник весил почти 1 кг и был 25 см в длину.

    Читайте также:  Создана технология, распознающая личность через ее силуэт

    Однако первый коммерческий сотовый телефон появился на рынке только 6 марта 1983 года, когда Motorola представила DynaTAC 8000Х. «Мобильник» был немного компактнее, он весил 794 г, зато стоил $3,5 тыс. — намного дороже новенького iPhone. Несмотря на это, отбоя от желающих купить новинку не было — в очередь записывались тысячи жителей США.

    Мобильная связь дала нам возможность моментально обмениваться информацией из любой точки мира. Данные стали распространяться быстрее, а прогресс в целом сильно ускорился. Устройства стали меньше, мощнее и функциональнее. Теперь у нас есть не только мобильные телефоны, но и их производные: планшеты, «читалки», «умные» браслеты. Благодаря развитию сетей связи получить огромный набор услуг теперь можно из любой точки мира.

    9 марта 1983 года — устройство, над которым работал американский инженер Чарльз Хал, смогло произвести 3D-печать чаши. Первый 3D-принтер был довольно габаритной промышленной установкой. Он создавал трехмерный объект путем нанесения фотополимеризующегося материала на подвижную платформу по макету.

    Первый серийный 3D-принтер SLA-1 был выпущен в 1987 году. Изначально его предполагалось использовать в автомобилестроении. Но в наши дни 3D-печать применяется буквально везде. В Европе в 2020 году 3D-принтер создал первый дом. А частная космическая компания Relatively Space поставила целью полностью напечатать на принтере ракету, и активно движется в этом направлении.

    6 августа 1991 года — британский ученый Тим Бернерс-Ли размещает в интернете первый сайт с основной информацией о его технологии WWW и о том, как просматривать документы и скачивать браузер. Этот день дал старт развитию пользовательского интернета.

    Разработка Всемирной паутины велась десятилетиями. Еще в 1973 году американский ученый в области теории вычислительных систем Винтон Серф при поддержке Агентства перспективных исследований Минобороны США представил компьютерную сеть, работающую на протоколе передачи информации TCP/IP. А проект ARPANET, который предшествовал появлению интернета, разрабатывали с 1964 года.

    Роль, которую играет интернет в нашей жизни переоценить невозможно. Пожалуй, это величайшее открытие XX века. Кстати, Винт Серф продолжает работать, но уже над проектом космического интернета. Сейчас его команда ведет испытания нового протокола передачи данных, который потенциально мог бы обеспечить связь в космосе.

    COVID-19 создали американцы: найдены подтверждающие факты

    Слухи о том, что новый коронавирус COVID-19 имеет искусственное происхождение и был создан американскими биологами, оказались не такими уж и беспочвенными.

    Еще в 2015 году американские научно-популярные издания сообщали о том, что в ходе лабораторного эксперимента на территории США была успешно создана гибридная форма коронавируса летучих мышей, способная передаваться человеку. Об этом, в частности, писал один из самых старых и авторитетных общенаучных журналов США Nature (для не владеющих английским языком вот ссылка на правительственную «Российскую газету»).

    Утверждалось, что вирус-мутант был создан американцами из вируса SHC014, переносчиком которого являются подковоносые летучие мыши, обитающие на территории Китая.

    Для того, чтобы провести моделирование заражения человека, поверхностный белок SHC014 был перенесен в вирус SARS, обитающий в легких лабораторных летучих мышей. А ведь верное название бушующего сейчас в мире коронавируса – SARS-CoV-2.

    Таким образом, гипотеза о возможности передачи коронавируса от летучей мыши человеку была доказана экспериментальным путем. Уже тогда возможность утечки гибридного вируса в ходе экспериментов встревожила ученые круги США.

    Однако, несмотря на введенный в октябре 2014 года мораторий на финансирование исследований вируса гриппа, для вирусов SARS и MERS правительство США сделало исключение.

    Таким образом, становится очевидным, что новый коронавирус COVID-19 был создан американцами задолго до того, как в китайском Ухане появился первый инфицированный.

    От Interset: Ниже приводится текст статьи в упомянутом выше американском научном сборнике Nature полностью в переводе.

    Спроектированный вирус летучей мыши вызывает дебаты по поводу рискованного исследования

    Изготовленный в лаборатории коронавирус, связанный с ОРВИ, может инфицировать клетки человека.

    Примечание редактора. Нам известно, что эта история используется в качестве основы для непроверенных теорий о создании нового коронавируса, вызывающего COVID-19. Нет никаких доказательств того, что это правда; ученые считают, что животное является наиболее вероятным источником коронавируса.

    Деклан Батлер 12 ноября 2015

    Эксперимент, в ходе которого была создана гибридная версия коронавируса летучей мыши – связанная с вирусом, вызывающим SARS (тяжелый острый респираторный синдром), – вызвала возобновление дебатов о том, стоит ли рисковать разработка инженерных лабораторных вариантов вирусов с возможным пандемическим потенциалом.

    В статье, опубликованной в Nature Medicine 1 9 ноября, ученые исследовали вирус SHC014, который обнаружен в подковообразных летучих мышах в Китае. Исследователи создали химерный вирус, состоящий из поверхностного белка SHC014 и основы вируса SARS, который был адаптирован для роста у мышей и имитации человеческого заболевания. Химера инфицировала клетки дыхательных путей человека – доказательство того, что поверхностный белок SHC014 имеет необходимую структуру, чтобы связываться с ключевым рецептором на клетках и инфицировать их. Это также вызвало болезнь у мышей, но не убило их.

    Хотя почти все коронавирусы, выделенные у летучих мышей, не способны связываться с ключевым человеческим рецептором, SHC014 не первый, кто может это сделать. В 2013 году исследователи впервые сообщили об этой способности у другого коронавируса, выделенного из той же популяции летучих мышей 2 .

    Полученные данные подтверждают подозрения, что коронавирусы летучих мышей, способные непосредственно заражать людей (вместо того, чтобы сначала развиваться у промежуточного животного-хозяина), могут встречаться чаще, чем считалось ранее, считают исследователи.

    Но другие вирусологи задаются вопросом, оправдывает ли информация, полученная в результате эксперимента, потенциальный риск. Хотя степень любого риска трудно оценить, Саймон Уэйн-Хобсон, вирусолог из Института Пастера в Париже, отмечает, что исследователи создали новый вирус, который «замечательно хорошо растет» в клетках человека. «Если вирус вырвется, никто не сможет предсказать траекторию», – говорит он.

    Создание химеры

    По сути, этот аргумент является повторением дебатов о том, разрешать ли лабораторные исследования, которые увеличивают вирулентность, легкость распространения или спектр опасных патогенных микроорганизмов – так называемое исследование «усиления функции».

    В октябре 2014 года правительство США ввело мораторий на федеральное финансирование таких исследований вирусов, вызывающих SARS, грипп и MERS (респираторный синдром на Ближнем Востоке, смертельное заболевание, вызываемое вирусом, который спорадически прыгает с верблюдов на людей).

    Последнее исследование уже проводилось до начала моратория США, и Национальный институт здравоохранения США (NIH) позволил ему продолжить его, пока он находился на рассмотрении агентства, говорит Ральф Барик, исследователь инфекционных заболеваний в Университете Севера. Каролина в Чапел-Хилл, соавтор исследования. В итоге NIH пришел к выводу, что работа не была настолько рискованной, чтобы попасть под мораторий, говорит он.

    Читайте также:  Создан обновленный вариант игрового компьютера 70-х годов

    Но Уэйн-Хобсон не одобряет исследование, потому что, по его словам, оно дает мало пользы и мало раскрывает риск того, что дикий вирус SHC014 у летучих мышей представляет для человека.

    Другие эксперименты в исследовании показывают, что вирус диких летучих мышей должен развиваться, чтобы представлять какую-либо угрозу для человека – изменение, которое может никогда не произойти, хотя его нельзя исключать. Барик и его команда реконструировали дикий вирус по последовательности его генома и обнаружили, что он плохо растет в клеточных культурах человека и не вызывает значительных заболеваний у мышей.

    «Единственное влияние этой работы – создание в лаборатории нового неестественного риска», – соглашается Ричард Эбрайт, специалист по молекулярной биологии и биозащите в Университете Рутгерса в Пискатауэй, Нью-Джерси. И Эбрайт, и Уэйн-Хобсон – давние критики исследований усиления функции.

    В своей статье авторы исследования также признают, что спонсоры могут дважды подумать о том, чтобы допустить подобные эксперименты в будущем. «Группы экспертов по научному обзору могут посчитать подобные исследования созданием химерных вирусов, основанных на циркулирующих штаммах, слишком рискованными для проведения», – пишут они, добавляя, что необходимо обсудить вопрос о том, «заслуживают ли эти типы исследований химерных вирусов дальнейшие исследования в сравнении с присущими им рисками».

    Но Барик и другие говорят, что исследование имело свои преимущества. Результаты исследования «превращают этот вирус из потенциального возбудителя в явную и существующую опасность», – говорит Питер Дашак, соавтор статьи 2013 года. Daszak является президентом EcoHealth Alliance, международной сети ученых со штаб-квартирой в Нью-Йорке, которая собирает вирусы от животных и людей в горячих точках возникающих болезней по всему миру.

    Дашак соглашается, что исследования по тестированию гибридных вирусов на клеточной культуре человека и на животных моделях ограничены в том, что они могут сказать об угрозе, которую представляет дикий вирус. Но он утверждает, что они могут помочь указать, какие патогенные микроорганизмы должны быть приоритетными для дальнейшего исследования.

    Без экспериментов, говорит Барик, вирус SHC014 все равно будет рассматриваться как не угроза. Ранее ученые полагали, основываясь на молекулярном моделировании и других исследованиях, что он не должен быть способен заражать клетки человека. Последняя работа показывает, что вирус уже преодолел критические барьеры, такие как способность захватывать человеческие рецепторы и эффективно инфицировать клетки дыхательных путей человека, говорит он. «Я не думаю, что вы можете игнорировать это». Он планирует провести дальнейшие исследования с вирусом у нечеловеческих приматов, которые могут дать данные, более актуальные для человека.

    От Interset : Трактовка Российской газеты приводится ниже:

    Ученые нашли новый смертельный вирус гриппа
    От Interset: (скорее СОЗДАЛИ, чем нашли. )

    Американские биологи создали смертельно опасный для человека коронавирус, экспериментируя с летучими мышами, сообщает журнал Nature.

    По данным издания, биологи создали вирус, способный напрямую заражать человека и вызывать его смерть. Исследователи экспериментировали с созданием гибрида коронавируса летучей мыши, обитающей в Китае. Они скрестили поверхностный белок SHC014 с вирусом SARS, который взяли из легких летучих мышей. В результате получился вирус-мутант. Тесты доказали, что он способен очень быстро и активно развиваться в клетках человеческого тела. Авторы исследования считают свою работу значимой. Им удалось доказать, что данный вирус смертельно опасен. Следовательно, человечество предупреждено.

    Однако открытие вызвало жаркие дебаты в научной среде. Спорят больше не о его ценности, а о возможной утечке вируса из лаборатории. Чем это грозит миру, можно только гадать. Ученые сходятся во мнении, что вирус-мутант способен унести массу жизней. Критике подвергается и тот факт, что эксперимент был проведен после того, как в 2014 году власти США ввели мораторий на финансирование исследований таких вирусов гриппа, как SARS и MERS. В данном случае почему-то было сделано исключение.

    История искусственной крови: как донорами становились мертвецы, быки и киты

    Сегодня в России отмечается Национальный день донора, инициированный в честь события, случившегося 20 апреля 1832 года. В тот день петербургский акушер Андрей Вольф впервые успешно провел переливание крови роженице с кровотечением.

    Одной только Москве ежедневно требуется более 200 литров крови. В среднем только в столице за год переливается до 50 тысяч литров компонентов донорской крови — остальное «доливается» из других регионов России. Не сказать, что где-то в стране есть большая концентрация доноров — для обеспечения полной потребности необходимо, чтобы их на каждую тысячу населения приходилось 40–60 человек, но этот показатель ниже и с годами не растет.

    Через Добро Mail.Ru мы регулярно рассказываем о благотворительных проектах, в которых может принять участие каждый — в том числе в качестве донора. Но раз крови не хватает от «естественного» источника, значит, нужно искать альтернативы. Разберемся, где должны скрываться ее безграничные запасы.

    Самая безопасная кровь

    Начнем с того, что люди пользуются донорской помощью за неимением другой. Сама же кровь от донора может быть источником множества опасностей. Иногда люди являются носителями всяких инфекций, не подозревая об этом. Быстрый анализ проверяет кровь на СПИД, гепатит, сифилис, но остальные вирусы и инфекции не могут быть сразу выявлены, если и сам донор о них не знает.

    Несмотря на защитные меры, различные вирусы часто передаются вместе с кровью. Например, герпес, цитомегаловирус, папилломавирус. Иногда передается и гепатит, поскольку тесты могут определить наличие гепатита только через несколько месяцев после его попадания в кровь.
    Свежую кровь можно хранить только 42 дня (примерно) и всего несколько часов без охлаждения. Статистика по США говорит, что там за один день около 46 человек погибают из-за потери крови — и это еще одна причина, почему ученые (не только в Штатах) работают в течение многих десятилетий, чтобы найти подходящий кровезаменитель.

    Искусственная кровь избавила бы от всех проблем. Искусственная кровь может быть лучше настоящей. Представьте, что она подходит пациентам с любой группой, хранится дольше обычной крови и в более щадящих условиях, изготавливается быстро и в больших количествах. Кроме того, стоимость искусственной крови можно сделать ниже стоимости крови от доноров.

    Читайте также:  В России появился официальный сервис по ремонту iPhone

    Гемоглобиновый кризис

    Попытки создать искусственную кровь ведутся уже около 60 лет. А если взять за основу эксперименты советского хирурга Владимира Шамова по переливанию трупной крови, впервые проведенные в 1928 году, то получается, что путь к переливанию крови не от обычных доноров насчитывает почти 90 лет.

    Трупная кровь не сворачивается из-за отсутствия в ней белка фибриногена, не требует добавления стабилизатора для хранения и может быть перелита пациенту с любой группой крови. Получить ее можно довольно много — один труп в среднем позволяет заготовить 2,9 л крови.

    В 1930 году советский хирург и ученый Сергей Юдин впервые применил в клинике переливание крови внезапно умерших людей. Впоследствии полученный опыт успешно применялся в годы Великой Отечественной войны, когда кровь, полученная от мертвых, зачастую становилась единственным шансом на выживание раненых бойцов.

    Первые, относительно успешные эксперименты с синтетической кровью начались в 80-е годы прошлого века, когда ученые пытались решить задачу доставки кислорода к органам. Искусственные клетки изготавливались из очищенного человеческого гемоглобина, несущего кислород белка. Однако оказалось, что гемоглобин вне клетки плохо взаимодействует с органами, повреждает ткань и приводит к сужению сосудов. Во время клинических испытаний первых заменителей крови некоторые пациенты перенесли инсульты. На этом эксперименты не закончились, просто в кровезаменителях молекулы гемоглобина получили покрытие из специального синтетического полимера.


    Кровь. Просто добавь воды

    Защищенные молекулы представляют собой порошок, который можно использовать где угодно, залив водой. Синтетические клетки могут использоваться с любым типом крови и хранятся долгое время при комнатной температуре. Однако они не помогут при сильной кровопотере и поддерживают пациента лишь до момента, пока не будет сделано переливание настоящей крови от донора.

    В другом исследовании вместо гемоглобина использовались перфторуглеводороды. Это углеводороды, в которых все атомы водорода замещены на атомы фтора. Они способны растворять большое количество разных газов, включая кислород.


    В этих бутылках — Oxycyte, белая искусственная кровь, состоящая из нескольких перфторуглеродов

    Заменитель гемоглобина на основе перфторуглеводорода Fluosol-DA-20 был разработан в Японии и впервые опробован в Соединенных Штатах в ноябре 1979 года. Первыми его получили пациенты, которые отказались от переливания крови по религиозным причинам. С 1989 по 1992 годы Fluosol применяли более 40 000 человек. Из-за трудностей с хранением препарата и высокой стоимости, его популярность снизилась, и производство закрыли. В 2014 году появился перфторуглеводородный препарат Oxycyte, но испытания свернули по неизвестным причинам.

    Была также предпринята попытка создать заменитель крови на основе бычьего гемоглобина. Переносчик кислорода Hemopure был стабилен в течение 36 месяцев при комнатной температуре и совместим со всеми группами крови. Hemopure одобрили для коммерческих продаж в Южной Африке в апреле 2001 года. В 2009 году производитель Hemopure обанкротился, так и не добившись разрешения клинического тестирования продукта на людях в США.

    Тернистый путь имитаторов

    Нанесение полимерного покрытия на молекулы гемоглобина — кропотливый процесс, который не удешевляет стоимость искусственной крови. Кроме того, гемоглобин — это лишь часть проблемы. Каждый набор клеток (эритроциты, тромбоциты и лейкоциты) имеет свое значение для организма. Разработки в области кровезаменителей в основном направлены на воспроизведение лишь одной функции крови: снабжение тканей кислородом. Другими словами, область за пределами кислородно-транспортных эритроцитов — непроходимая чаща опасностей для ученых.

    Как рассказывал биофизик Михаил Пантелеев в статье о проблемах искусственной крови, за последние годы удалось значительно продвинуться в области имитации тромбоцитов, отвечающих за устранение повреждений при небольших кровотечениях. Ученые берут липосому или нанокапсулу размером в сотни нанометров и вставляют в нее нужные белки. Искусственные тромбоциты позволяют закрепляться за те немногие тромбоциты, которые у человека еще остались при сильной кровопотере. Но когда у организма не остается своих собственных тромбоцитов, искусственные уже ничем не помогут.

    Несмотря на то, что искусственные тромбоциты не обладают всеми функциями настоящих живых клеток, ими можно успешно останавливать кровотечения в экстренных случаях.


    Так выглядит кровь из морских червей

    С правильно подобранными белками можно сделать много интересного. Румынские ученые из университета Бабеш-Бойяи создали искусственный заменитель крови на основе железосодержащего белка гемэритрина, который используют для транспорта кислорода некоторые разновидности морских червей. Команда биохимиков из Университета Райса пошла глубже и стала использовать белки из мышц китов. Оказалось, что у китов есть накапливающий кислород в мышцах миоглобин, похожий на гемоглобин из человеческой крови. Глубоководные животные, обладая большим запасом кислорода в мышцах, долгое время могут не всплывать на поверхность. На основе изучения китового белка можно будет повысить эффективность синтеза гемоглобина в искусственных эритроцитах.

    Намного хуже дела обстоят с лейкоцитами, являющимися неотъемлемой частью иммунной системы организма. Те же самые эритроциты, переносчики кислорода, можно заменить искусственными аналогами — например, созданным в России перфтораном. Для лейкоцитов ничего лучше стволовых клеток не придумали, но на этом пути оказалось слишком много сложностей, связанных с агрессивными действиями клеток против нового хозяина.

    Нанокровь

    Роберт Фрайтас, автор первого технического исследования потенциального медицинского применения гипотетической молекулярной нанотехнологии и гипотетической медицинской нанороботехники, разработал детализированный проект создания искусственного эритроцита, который он назвал «респироцит».

    В 2002 году Фрайтас в книге «Roboblood» (робототехническая кровь) предложил концепцию искусственной крови, в которой вместо биологических клеток будут 500 триллионов нанороботов. Фрайтас представляет кровь будущего в виде сложной мультисегментной нанотехнологической медицинской робототехнической системы, способной обмениваться газами, глюкозой, гормонами, выводить отходы клеточных компонентов, осуществлять процесс деления цитоплазмы и т.д.

    На момент создания концепта работа выглядела полной фантастикой, но спустя 15 лет, то есть уже сейчас, в 2017 году, японские ученые сообщили о создании биомолекулярного микроробота, управляемого ДНК. Японские исследователи решили одну из самых сложных задач нанотехнологий — обеспечили механизм движения устройства за счет использования синтетической одноцепочечной ДНК.

    В 2016 году швейцарские ученые опубликовали исследование в журнале Nature Communication о создании прототипа наноробота, способного проводить операции внутри человека. В конструкции нет двигателей и жестких соединений, а само тело создано из гидрогеля, совместимого с живыми тканями. Движение в этом случае осуществляется за счет магнитных наночастиц и электромагнитного поля.

    Читайте также:  Создан искусственный интеллект, позволяющий управлять космическими базами

    Фрайтас, ориентируясь на эти исследования, сохраняет оптимизм: он уверен, что через 20–30 лет удастся заменить кровь человека нанороботами, получающими питание из глюкозы и кислорода. Производить электроэнергию из глюкозы организма японские ученые уже научились.

    Кровь из стволовых клеток


    Гемопоэтические стволовые клетки, полученные из костного мозга, дают начало всем типам клеток крови

    В 2008 году удалось наладить производство клеток крови из плюрипотентных стволовых клеток (способных обретать разные функции), полученных из органов человека. Стволовые клетки оказались лучшим источников красных кровяных телец.

    В 2011 году исследователи из Университета Пьера и Мари Кюри (Франция) провели первое небольшое переливание добровольцам выращенных в лаборатории красных кровяных клеток. Эти клетки вели себя так же, как нормальные эритроциты, причем около 50% из них все еще циркулировали в крови через 26 дней после переливания. В эксперименте добровольцам влили 10 миллиардов искусственных клеток, что эквивалентно 2 миллилитрам крови.

    Эксперимент прошел успешно, но возникла другая проблема — одна кроветворная стволовая клетка была способна произвести всего до 50 тыс. красных кровяных телец, после чего погибала. Получение новых стволовых клеток — процесс не дешевый, поэтому стоимость одного литра искусственной крови становилась слишком высокой.

    В 2017 году ученые из Государственной службы донорства и трансплантации Национальной службы здравоохранения Великобритании (NHS Blood and Transplant) совместно с коллегами из Бристольского университета провели эксперименты с гемопоэтическими стволовыми клетками. Оказалось, что чем более ранней является клетка, тем выше ее способность к регенерации — так, с помощью всего одной гемопоэтической клетки можно восстановить всю кроветворную ткань у мыши. Ученым удалось использовать для производства искусственной крови стволовые клетки на ранних стадиях развития, что наконец-то дало возможность производить ее почти в неограниченных количествах.

    Созданные таким образом эритроциты в конце 2017 года начнут испытывать на людях. Непрерывная генерация эритроцитов из подходящих клеток снижает стоимость искусственной крови, но ее будущее зависит от прохождения стадии клинических испытаний.

    И даже после успешных клинических испытаний никто не сможет заменить обычных доноров. Искусственная кровь в первые годы появления будет помогать людям с редкой группой крови, в горячих точках и в беднейших странах мира.

    Ученые создали ксеноботов — роботов, построенных из живых клеток

    Разработка живых существ долгое время казалась фантастикой, но теперь это реальность — компьютерные инженеры из Университета Вермонта и биофизики из Университета Тафтса создали биороботов. В статье, опубликованной в PNAS, они описывают использование ИИ для создания совершенно нового организма из стволовых клеток лягушки — фактически, они создали крошечного живого робота. Их основная цель состоит в том, чтобы использовать этих «ксеноботов» для лучшего понимания того, как клетки всех видов общаются друг с другом.

    Эти биороботы не могут есть, не могут размножаться и живут лишь около недели, поэтому вторжение франкенжаб не должно занимать первое место в вашем списке проблем. То, что они могут делать, это ходить, плавать, толкать или переносить предметы и работать вместе в группах. Это существенные достижения для первых в своем роде роботов, сделанных из мешанины клеток.

    Для достижения этой цели команда из Вермонтского университета разработала искусственный интеллект, способный выполнять десятки тысяч симуляций того, как будут вести себя различные комбинации клеток кожи и сердца, если они будут построены в реальном мире. Команда из Университета Тафтса использовала некоторые из этих предсказаний, чтобы построить функциональный организм из стволовых клеток, взятых из эмбрионов лягушек.

    Команда собирает эти клетки, обрезая периферическую область эмбриона, которая обычно развивается в кожу или сердечную мышцу позже в процессе роста. Они вручную разделяют ткань на отдельные клетки и помещают их в специальные формы.


    Различные дизайны ксеноботов.

    Это похоже на создание мармелада: все перемешано, и вы не ожидаете того, что эти отдельные клетки смогут координировать свои действия. Другими словами, расплавленный мармелад сам по себе никогда не превратится в жевательного мишку. Но «то, что они строят — это не просто беспорядок», — говорит биофизик из Университета Тафтса Майкл Левин. «Это функциональный, целостный организм».

    Этот организм движется, используя клетки сердечной мышцы, которые предназначены для сокращений (так бьется ваше сердце). Клетки кожи помогают удерживать все вместе, точно так же, как они это делают в настоящих организмах, говорит микробиолог Мичиганского университета Кристофер Адами, который не участвовал в исследовании.

    После того, как исследователи вытаскивают ксенобота из формы, команда вручную обрезает его до вида, предсказанного искусственным интеллектом. По словам Левина, они придумали «рецепт», с помощью которого можно создавать относительно небольшое количество ксеноботов, способных передвигаться и выполнять одни и те же функции. Такие существа могут в конечном итоге найти практическое применение вне лаборатории, например, для улучшения доставки лекарств внутри организма.

    И это только первый шаг. «Перевод сгенерированного компьютером существа в биологический организм — это нечто новое», — говорит Адами. Но не ясно, сколько времени понадобится этому методу, чтобы стать новой медицинской технологией или даже изменить понимание того, как работают клетки.

    Тем не менее, это выглядит многообещающе. «Перенос поведения робота из симуляции в реальность чрезвычайно сложен, и эта новая статья показывает впечатляющие результаты», — сказала инженер робототехники Йельского университета Ребекка Крамер-Боттильо. «Использование командой живых клеток для получения моделируемых конструкций и моделей поведения является особенно многообещающим показателем нашей будущей способности создавать биосовместимых роботов, которые будут использовать упругость и интеллект живых тканей».


    Процесс создания ксеноботов.

    На данный момент команда сосредоточена на фундаментальной науке, а не на научно-фантастических медицинских возможностях. Они работают над проектированием новых дизайнов ксеноботов, которые будут более четко демонстрировать, как клетки взаимодействуют друг с другом. Мы знаем, что они используют такие методы, как электричество и химические сигналы для координации, но в настоящее время мы понятия не имеем, как клетки общаются между собой, или как они решают, какие формы строить.

    Существует несколько способов создать «живого робота», и эти ксеноботы не первые. Другие команды используют генную инженерию и различные виды производства тканей для создания клеток, которые могут выполнять функции, отличные от тех, для которых они предназначены. Настоящий прогресс в новой работе заключается в использовании ИИ для разработки ксеноботов, говорит компьютерный инженер из Университета Вермонта Джош Бонгард.

    Читайте также:  Технологии искусственного интеллекта в повседневной жизни

    По его словам, компьютер «в основном работает методом проб и ошибок над миллиардами и миллиардами конструкций ксеноботов». И новое исследование показывает, насколько это эффективно для создания дизайна, который работает в реальном мире.

    Хотя это может звучать как что-то из научной фантастики, люди постоянно меняют организмы и делают это на протяжении тысячелетий. Но этот процесс обычно занимает десятилетия или даже столетия — подумайте об одомашненных культурах, таких как кукуруза, которая не очень-то похожа на своих диких предков — точный конечный результат практически невозможно контролировать.

    Бонгард признает, что создание совершенно новых организмов поднимает много этических вопросов, даже если эти организмы не способны думать или чувствовать в нашем понимании этого. По мере развития технологий, говорит он, в конечном итоге нам, возможно, потребуется выработать правила этического отношения к ксеноботам.


    Однако, «они не живы в том смысле, в котором вы обычно думаете об этом», — отмечает Адами. «По сути это ткани, которые реагируют на стимуляции».

    Еще неизвестно, что будет дальше с ксеноботами, и что они могут рассказать нам о том, как работают клетки. Больше всего Левина интересует, как клетки общаются между собой. «Общая задача здесь со стороны биологии — понять, как взаимодействуют отдельные клетки и как они решают, какие тела строить», — говорит Левин. «Это действительно песочница».

    По его словам, понимание того, как клетки обмениваются информацией, будет иметь важное значение для будущего биологических наук. «Мы сейчас на той же стадии развития, на которой была информатика в 40-х годах, когда для того, чтобы что-то перепрограммировать, нужно было перетыкать провода и работать с физическими переключателями», — говорит он про генную инженерию. «Мы должны двигаться вперед, совершив переход от «железа» к «программам».

    Однако для этого, по словам Адами, может потребоваться развитие более тонкого физического контроля над клетками. На данном этапе команда должна физически строить ксеноботов, и хотя они надеются в конечном итоге автоматизировать процесс, Адами говорит, что до технологий простой 3D-печати таких организмов еще очень далеко.

    «Эти существа — по сути эмбрионы. Они маленькие. И у нас нет механизма, который позволит автоматизировать их производство», — говорит Адами. Однако даже в не очень больших количествах эти крошечные существа могут дать важную информацию о том, как отдельные клетки формируют целый организм.

    Ученые создали «живых» нанороботов из клеток африканской лягушки

    В январе 2020 года исследователи из Университета Тафтса и Университета Вермонта разработали метод создания крошечных биологических машин из яиц африканской когтистой лягушки Xenopus laevis. Прозванные ксеноботами в честь своих животных предков эти «живые» машины могли передвигаться самостоятельно, толкать предметы и даже объединяться в рои. Примечательно, что для их создания ученые использовали эволюционный алгоритм, работающий на суперкомпьютере. С его помощью команда смогла протестировать тысячи потенциальных конструкций, состоящих из различных конфигураций клеток, так что никакой вам генной инженерии. Но самое потрясающее, пожалуй, заключается в том, что год спустя та же команда выпустила новую версию ксеноботов, которые не только стали быстрее, сильнее и способнее, чем когда-либо, но даже собирают собственные тела из отдельных клеток.

    Из клеток лягушачьей кожи был создан микроскопический живой робот, способный исцелять и питать себя.

    Как появились ксеноботы?

    Итак, ксеноботы – это синтетические организмы, которые автоматически создаются компьютерами для выполнения заранее определенных задач и строятся путем объединения различных биологических тканей. Впервые мир услышал о них в начале 2020 года, но ввиду обнаружения коронавируса SARS-CoV-2, на тот момент новость не получила должного внимания. Но именно тогда тонкая грань между животным и машиной стала размытой.

    Создание первых живых роботов – новость из разряда научной фантастики. Судите сами – эти крошечные машины могли выполнять множество задач и действий, включая перемещение себя и других объектов вокруг и демонстрацию коллективного поведения в составе роя таких роботов (что является невероятно сложной задачей).

    Сегодня создание механизма, выполняющего задачи под управлением искусственного интеллекта не является чем-то новым. К тому же, ученые давно научились перестраивать существующие организмы, меняя их характеристики, форму или структуру. Так что все было бы очень здорово, если бы не одно «но» – все живые организмы демонстрируют устойчивость к любому вмешательству извне, нацеленному на изменение их поведения.

    Материалы, традиционно применяющиеся в робототехнике просты в изготовлении и внедрении; например, металл всегда можно расплавить, заточить или перековать – в отличие от живых существ.

    К счастью, существуют эмбриональные клетки, которые обладают по-настоящему удивительными свойствами: они способны к самоорганизации, регенерации тканей и процессов развития (в зависимости от ситуации). Грамотные манипуляции с эмбриональными клетками могут помочь ученым в создании новых форм жизни – каким бы удивительным нам это не казалось.

    Как пишут авторы исследования, опубликованного в журнале Science Robotics, для создания ксеноботов они взяли стволовые клетки из эмбрионов лягушек и позволили им вырасти в скопления из нескольких тысяч клеток, называемых сфероидами. Через несколько дней стволовые клетки превратились в клетки кожи, покрытые маленькими волоскоподобными выступами, называемыми ресничками, которые извиваются взад и вперед.

    Обычно эти структуры используются для распространения слизи по коже лягушки. Но в отрыве от своего обычного контекста они взяли на себя функцию, более похожую на ту, что наблюдается у микроорганизмов, которые используют реснички для перемещения, действуя как крошечные весла.

    Продолжительность жизни подобных микроботов на основе клеток составляет от десяти до 14 дней. Они могут плавать и ходить благодаря структурам, напоминающим волоски.

    «Мы наблюдаем замечательную пластичность клеточных коллективов, которые строят рудиментарное новое «тело». Оно сильно отличается от их стандартного – в данном случае лягушки – несмотря на наличие совершенно нормального генома», – пишут авторы работы в пресс-релизе исследования.

    Исследователи отмечают, что этот процесс не отличается от обычного способа создания робота, просто для его создания используется биологическую ткань. «В каком-то смысле ксеноботы устроены так же, как и обычные роботы, только мы используем клетки и ткани, а не искусственные компоненты, чтобы построить форму и создать предсказуемое поведение»,-пишут авторы научной работы.

    Ксеноботы 2.0

    Так как строить каждого отдельного ксенобота вручную занятие явно утомительное, команда разработала новый подход, который работает снизу вверх, заставляя ксеноботов самостоятельно собирать свои тела из отдельных клеток. Этот подход более масштабируемый, а новые ксеноботы не только быстрее, живут дольше и имеют рудиментарную память, но и лучше справляются с совместной работой.

    Читайте также:  CS:GO как киберспортивная дисциплина

    И хотя форма и функции ксеноботов были достигнуты без какой-либо генной инженерии, в дополнительном эксперименте команда ввела им РНК, которая заставила их производить флуоресцентный белок. Это, по мнению ученых, служит доказательством того, что ксеноботы могут обладать молекулярной памятью. Но зачем вообще кому-то понадобилось создавать нечто подобное?

    В общем и целом, как отмечают исследователи, процессы, которые помогают формировать ксеноботов, могут рассказать нам как сформировались Homo sapiens.

    Во-первых, роботы, сделанные из стволовых клеток, полностью биоразлагаемы и способны к самовосстановлению всего за пять минут (если их разрезать), во-вторых они могут воспользоваться способностью клеток обрабатывать все виды химических веществ. А значит, ксеноботам можно найти применение во всем – от терапии до экологической инженерии.

    Хотите всегда быть в курсе последних новостей из мира высоких технологий и популярной науки? Подписывайтесь на наш новостной канал в Telegram чтобы не получить ничего интересного!

    Ученые, в свою очередь, надеются использовать их, чтобы лучше понять процессы, которые позволяют отдельным клеткам объединяться и работать вместе. Ксеноботы могут помочь пролить свет на то, как именно клетки – такие, как те, что составляют человеческое тело – собираются вместе, чтобы сформировать единый организм, работающий как система.

    «С точки зрения биологии, этот подход помогает нам понять, как клетки общаются, когда они взаимодействуют друг с другом во время развития, и как мы можем лучше контролировать эти взаимодействия» – пишут создатели ксеноботов. Как говорится, the future is here.

    История искусственной крови: как донорами становились мертвецы, быки и киты

    Сегодня в России отмечается Национальный день донора, инициированный в честь события, случившегося 20 апреля 1832 года. В тот день петербургский акушер Андрей Вольф впервые успешно провел переливание крови роженице с кровотечением.

    Одной только Москве ежедневно требуется более 200 литров крови. В среднем только в столице за год переливается до 50 тысяч литров компонентов донорской крови — остальное «доливается» из других регионов России. Не сказать, что где-то в стране есть большая концентрация доноров — для обеспечения полной потребности необходимо, чтобы их на каждую тысячу населения приходилось 40–60 человек, но этот показатель ниже и с годами не растет.

    Через Добро Mail.Ru мы регулярно рассказываем о благотворительных проектах, в которых может принять участие каждый — в том числе в качестве донора. Но раз крови не хватает от «естественного» источника, значит, нужно искать альтернативы. Разберемся, где должны скрываться ее безграничные запасы.

    Самая безопасная кровь

    Начнем с того, что люди пользуются донорской помощью за неимением другой. Сама же кровь от донора может быть источником множества опасностей. Иногда люди являются носителями всяких инфекций, не подозревая об этом. Быстрый анализ проверяет кровь на СПИД, гепатит, сифилис, но остальные вирусы и инфекции не могут быть сразу выявлены, если и сам донор о них не знает.

    Несмотря на защитные меры, различные вирусы часто передаются вместе с кровью. Например, герпес, цитомегаловирус, папилломавирус. Иногда передается и гепатит, поскольку тесты могут определить наличие гепатита только через несколько месяцев после его попадания в кровь.
    Свежую кровь можно хранить только 42 дня (примерно) и всего несколько часов без охлаждения. Статистика по США говорит, что там за один день около 46 человек погибают из-за потери крови — и это еще одна причина, почему ученые (не только в Штатах) работают в течение многих десятилетий, чтобы найти подходящий кровезаменитель.

    Искусственная кровь избавила бы от всех проблем. Искусственная кровь может быть лучше настоящей. Представьте, что она подходит пациентам с любой группой, хранится дольше обычной крови и в более щадящих условиях, изготавливается быстро и в больших количествах. Кроме того, стоимость искусственной крови можно сделать ниже стоимости крови от доноров.

    Гемоглобиновый кризис

    Попытки создать искусственную кровь ведутся уже около 60 лет. А если взять за основу эксперименты советского хирурга Владимира Шамова по переливанию трупной крови, впервые проведенные в 1928 году, то получается, что путь к переливанию крови не от обычных доноров насчитывает почти 90 лет.

    Трупная кровь не сворачивается из-за отсутствия в ней белка фибриногена, не требует добавления стабилизатора для хранения и может быть перелита пациенту с любой группой крови. Получить ее можно довольно много — один труп в среднем позволяет заготовить 2,9 л крови.

    В 1930 году советский хирург и ученый Сергей Юдин впервые применил в клинике переливание крови внезапно умерших людей. Впоследствии полученный опыт успешно применялся в годы Великой Отечественной войны, когда кровь, полученная от мертвых, зачастую становилась единственным шансом на выживание раненых бойцов.

    Первые, относительно успешные эксперименты с синтетической кровью начались в 80-е годы прошлого века, когда ученые пытались решить задачу доставки кислорода к органам. Искусственные клетки изготавливались из очищенного человеческого гемоглобина, несущего кислород белка. Однако оказалось, что гемоглобин вне клетки плохо взаимодействует с органами, повреждает ткань и приводит к сужению сосудов. Во время клинических испытаний первых заменителей крови некоторые пациенты перенесли инсульты. На этом эксперименты не закончились, просто в кровезаменителях молекулы гемоглобина получили покрытие из специального синтетического полимера.


    Кровь. Просто добавь воды

    Защищенные молекулы представляют собой порошок, который можно использовать где угодно, залив водой. Синтетические клетки могут использоваться с любым типом крови и хранятся долгое время при комнатной температуре. Однако они не помогут при сильной кровопотере и поддерживают пациента лишь до момента, пока не будет сделано переливание настоящей крови от донора.

    В другом исследовании вместо гемоглобина использовались перфторуглеводороды. Это углеводороды, в которых все атомы водорода замещены на атомы фтора. Они способны растворять большое количество разных газов, включая кислород.


    В этих бутылках — Oxycyte, белая искусственная кровь, состоящая из нескольких перфторуглеродов

    Заменитель гемоглобина на основе перфторуглеводорода Fluosol-DA-20 был разработан в Японии и впервые опробован в Соединенных Штатах в ноябре 1979 года. Первыми его получили пациенты, которые отказались от переливания крови по религиозным причинам. С 1989 по 1992 годы Fluosol применяли более 40 000 человек. Из-за трудностей с хранением препарата и высокой стоимости, его популярность снизилась, и производство закрыли. В 2014 году появился перфторуглеводородный препарат Oxycyte, но испытания свернули по неизвестным причинам.

    Читайте также:  В токийском метро роботы начнут помогать пассажирам

    Была также предпринята попытка создать заменитель крови на основе бычьего гемоглобина. Переносчик кислорода Hemopure был стабилен в течение 36 месяцев при комнатной температуре и совместим со всеми группами крови. Hemopure одобрили для коммерческих продаж в Южной Африке в апреле 2001 года. В 2009 году производитель Hemopure обанкротился, так и не добившись разрешения клинического тестирования продукта на людях в США.

    Тернистый путь имитаторов

    Нанесение полимерного покрытия на молекулы гемоглобина — кропотливый процесс, который не удешевляет стоимость искусственной крови. Кроме того, гемоглобин — это лишь часть проблемы. Каждый набор клеток (эритроциты, тромбоциты и лейкоциты) имеет свое значение для организма. Разработки в области кровезаменителей в основном направлены на воспроизведение лишь одной функции крови: снабжение тканей кислородом. Другими словами, область за пределами кислородно-транспортных эритроцитов — непроходимая чаща опасностей для ученых.

    Как рассказывал биофизик Михаил Пантелеев в статье о проблемах искусственной крови, за последние годы удалось значительно продвинуться в области имитации тромбоцитов, отвечающих за устранение повреждений при небольших кровотечениях. Ученые берут липосому или нанокапсулу размером в сотни нанометров и вставляют в нее нужные белки. Искусственные тромбоциты позволяют закрепляться за те немногие тромбоциты, которые у человека еще остались при сильной кровопотере. Но когда у организма не остается своих собственных тромбоцитов, искусственные уже ничем не помогут.

    Несмотря на то, что искусственные тромбоциты не обладают всеми функциями настоящих живых клеток, ими можно успешно останавливать кровотечения в экстренных случаях.


    Так выглядит кровь из морских червей

    С правильно подобранными белками можно сделать много интересного. Румынские ученые из университета Бабеш-Бойяи создали искусственный заменитель крови на основе железосодержащего белка гемэритрина, который используют для транспорта кислорода некоторые разновидности морских червей. Команда биохимиков из Университета Райса пошла глубже и стала использовать белки из мышц китов. Оказалось, что у китов есть накапливающий кислород в мышцах миоглобин, похожий на гемоглобин из человеческой крови. Глубоководные животные, обладая большим запасом кислорода в мышцах, долгое время могут не всплывать на поверхность. На основе изучения китового белка можно будет повысить эффективность синтеза гемоглобина в искусственных эритроцитах.

    Намного хуже дела обстоят с лейкоцитами, являющимися неотъемлемой частью иммунной системы организма. Те же самые эритроциты, переносчики кислорода, можно заменить искусственными аналогами — например, созданным в России перфтораном. Для лейкоцитов ничего лучше стволовых клеток не придумали, но на этом пути оказалось слишком много сложностей, связанных с агрессивными действиями клеток против нового хозяина.

    Нанокровь

    Роберт Фрайтас, автор первого технического исследования потенциального медицинского применения гипотетической молекулярной нанотехнологии и гипотетической медицинской нанороботехники, разработал детализированный проект создания искусственного эритроцита, который он назвал «респироцит».

    В 2002 году Фрайтас в книге «Roboblood» (робототехническая кровь) предложил концепцию искусственной крови, в которой вместо биологических клеток будут 500 триллионов нанороботов. Фрайтас представляет кровь будущего в виде сложной мультисегментной нанотехнологической медицинской робототехнической системы, способной обмениваться газами, глюкозой, гормонами, выводить отходы клеточных компонентов, осуществлять процесс деления цитоплазмы и т.д.

    На момент создания концепта работа выглядела полной фантастикой, но спустя 15 лет, то есть уже сейчас, в 2017 году, японские ученые сообщили о создании биомолекулярного микроробота, управляемого ДНК. Японские исследователи решили одну из самых сложных задач нанотехнологий — обеспечили механизм движения устройства за счет использования синтетической одноцепочечной ДНК.

    В 2016 году швейцарские ученые опубликовали исследование в журнале Nature Communication о создании прототипа наноробота, способного проводить операции внутри человека. В конструкции нет двигателей и жестких соединений, а само тело создано из гидрогеля, совместимого с живыми тканями. Движение в этом случае осуществляется за счет магнитных наночастиц и электромагнитного поля.

    Фрайтас, ориентируясь на эти исследования, сохраняет оптимизм: он уверен, что через 20–30 лет удастся заменить кровь человека нанороботами, получающими питание из глюкозы и кислорода. Производить электроэнергию из глюкозы организма японские ученые уже научились.

    Кровь из стволовых клеток


    Гемопоэтические стволовые клетки, полученные из костного мозга, дают начало всем типам клеток крови

    В 2008 году удалось наладить производство клеток крови из плюрипотентных стволовых клеток (способных обретать разные функции), полученных из органов человека. Стволовые клетки оказались лучшим источников красных кровяных телец.

    В 2011 году исследователи из Университета Пьера и Мари Кюри (Франция) провели первое небольшое переливание добровольцам выращенных в лаборатории красных кровяных клеток. Эти клетки вели себя так же, как нормальные эритроциты, причем около 50% из них все еще циркулировали в крови через 26 дней после переливания. В эксперименте добровольцам влили 10 миллиардов искусственных клеток, что эквивалентно 2 миллилитрам крови.

    Эксперимент прошел успешно, но возникла другая проблема — одна кроветворная стволовая клетка была способна произвести всего до 50 тыс. красных кровяных телец, после чего погибала. Получение новых стволовых клеток — процесс не дешевый, поэтому стоимость одного литра искусственной крови становилась слишком высокой.

    В 2017 году ученые из Государственной службы донорства и трансплантации Национальной службы здравоохранения Великобритании (NHS Blood and Transplant) совместно с коллегами из Бристольского университета провели эксперименты с гемопоэтическими стволовыми клетками. Оказалось, что чем более ранней является клетка, тем выше ее способность к регенерации — так, с помощью всего одной гемопоэтической клетки можно восстановить всю кроветворную ткань у мыши. Ученым удалось использовать для производства искусственной крови стволовые клетки на ранних стадиях развития, что наконец-то дало возможность производить ее почти в неограниченных количествах.

    Созданные таким образом эритроциты в конце 2017 года начнут испытывать на людях. Непрерывная генерация эритроцитов из подходящих клеток снижает стоимость искусственной крови, но ее будущее зависит от прохождения стадии клинических испытаний.

    И даже после успешных клинических испытаний никто не сможет заменить обычных доноров. Искусственная кровь в первые годы появления будет помогать людям с редкой группой крови, в горячих точках и в беднейших странах мира.

  • Ссылка на основную публикацию