Плиточные панели, преобразующие солнечную энергию в электрическую

Как происходит процесс преобразования солнечной энергии в электрическую

Многие из нас так или иначе сталкивались с солнечными элементами. Кто-то пользовался или пользуется солнечными батареями для получения электричества в бытовых целях, кто-то использует небольшую солнечную панель для зарядки любимого гаджета в полевых условиях, а кто-то уж точно видел маленький солнечный элемент на микрокалькуляторе. Некоторым даже посчастливилось побывать на солнечной электростанции.

Но задумывались ли вы когда-нибудь о том, как происходит процесс преобразования солнечной энергии в энергию электрическую? Какое физическое явление лежит в основе работы всех этих солнечных элементов? Давайте обратимся к физике и разберемся в процессе генерации детально.

С самого начала очевидно, что источником энергии здесь является солнечный свет, или, выражаясь научным языком, электрическая энергия получается благодаря фотонам солнечного излучения. Эти фотоны можно представить себе как непрерывно движущийся от Солнца поток элементарных частиц, каждая из которых обладает энергией, и следовательно весь световой поток несет в себе какую-то энергию.

С каждого квадратного метра поверхности Солнца непрерывно излучается по 63 МВт энергии в форме излучения! Максимальная интенсивность этого излучения приходится на диапазон видимого спектра – волны с длиной от 400 до 800 нм.

Так вот, ученые определили, что плотность энергии потока солнечного света на расстоянии от Солнца до Земли в 149600000 километров, после его прохождения через атмосферу, и по достижении поверхности нашей планеты, составляет в среднем приблизительно 900 Вт на квадратный метр.

Здесь эту энергию можно принять и попытаться получить из нее электричество, то есть преобразовать энергию светового потока Солнца – в энергию движущихся заряженных частиц, проще говоря – в электрический ток.

Для преобразования света в электричество нам потребуется фотоэлектрический преобразователь . Такие преобразователи очень распространены, они встречаются в свободной продаже, это так называемые солнечные ячейки — фотоэлектрические преобразователи в виде вырезанных из кремния пластин.

Лучшие — монокристаллические, они обладают КПД порядка 18%, то есть если поток фотонов от солнца обладает плотностью энергии в 900 Вт/кв.м, то можно рассчитывать на получение 160 Вт электричества с квадратного метра батареи, собранной из таких ячеек.

Работает здесь явление, называемое «фотоэффектом». Фотоэффект или фотоэлектрический эффект — это явление испускания электронов веществом (явление вырывания электронов из атомов вещества) под действием света или любого другого электромагнитного излучения.

Еще в 1900 году Макс Планк, отец квантовой физики, выдвинул предположение, что свет излучается и поглощается отдельными порциями или квантами, которые позже, а именно в 1926 году, химик Гилберт Льюис назовет «фотонами».

Каждый фотон обладает энергией, которая может быть определена по формуле Е = hv — постоянная Планка умножить на частоту излучения.

В соответствии с идеей Макса Планка стало объяснимым явление, открытое в 1887 году Герцем, и исследованное затем досконально с 1888 по 1890 год Столетовым. Александр Столетов экспериментально изучил фотоэффект и установил три закона фотоэффекта (законы Столетова):

При неизменном спектральном составе электромагнитных излучений, падающих на фотокатод, фототок насыщения пропорционален энергетической освещённости катода (иначе: число фотоэлектронов, выбиваемых из катода за 1 с, прямо пропорционально интенсивности излучения).

Максимальная начальная скорость фотоэлектронов не зависит от интенсивности падающего света, а определяется только его частотой.

Для каждого вещества существует красная граница фотоэффекта, то есть минимальная частота света (зависящая от химической природы вещества и состояния поверхности), ниже которой фотоэффект невозможен.

Позже, в 1905 году, теорию фотоэффекта прояснит Эйнштейн. Он покажет, как квантовая теория света и закон сохранения и превращения энергии превосходно объясняют происходящее и наблюдаемое. Эйнштейн запишет уравнение фотоэффекта, за которое в 1921 году получит Нобелевскую премию:

Работы выхода А здесь — это минимальная работа, которую необходимо совершить электрону чтобы покинуть атом вещества. Второе слагаемое — кинетическая энергия электрона после выхода.

То есть фотон поглощается электроном атома, благодаря чему кинетическая энергия электрона в атоме возрастает на величину энергии поглощенного фотона.

Часть этой энергии расходуется на выход электрона из атома, электрон выходит из атома и получает возможность свободно двигаться. А направленно движущиеся электроны — это ничто иное, как электрический ток или фототок. В итоге можно говорить о возникновении ЭДС в веществе в результате фотоэффекта.

Стало быть, солнечная батарея работает благодаря действующему в ней фотоэффекту. Но куда движутся «выбитые» электроны в фотоэлектрическом преобразователе? Фотоэлектрический преобразователь или солнечная ячейка или фотоэлемент — это полупроводник, следовательно фотоэффект в нем происходит необычно, это внутренний фотоэффект, и он имеет даже специальное название «вентильный фотоэффект».

Под действием солнечного света в p-n переходе полупроводника возникает фотоэффект и появляется ЭДС, но электроны не покидают фотоэлемент, все происходит в запирающем слое, когда электроны покидают одну часть тела, переходя в другую его часть.

Кремния в земной коре 30% от ее массы, поэтому его всюду и используют. Особенность полупроводников вообще заключается в том, что они и не проводники и не диэлектрики, их проводимость зависит от концентрации примесей, от температуры и от воздействия излучений.

Ширина запрещенной зоны в полупроводнике составляет несколько электрон-вольт, и это как раз разность энергий между верхним уровнем валентной зоны атомов, откуда вырываются электроны, и нижним уровнем зоны проводимости. У кремния запрещенная зона имеет ширину 1,12 эВ — как раз то что нужно для поглощения солнечного излучения.

Итак, p-n переход. Легированные слои кремния в фотоэлементе образуют p-n переход. Здесь получается энергетический барьер для электронов, они покидают валентную зону и движутся только в одном направлении, в противоположном направлении движутся дырки. Так и получается ток в солнечном элементе, то есть имеет место генерация электроэнергии из солнечного света.

P-n переход, подвергаемый действию фотонов, не позволяет носителям заряда — электронам и дыркам — двигаться иначе, чем только в одном направлении, они разделяются и оказываются по разные стороны от барьера. И будучи присоединен к цепи нагрузки посредством верхнего и нижнего электродов, фотоэлектрический преобразователь, подвергаемый действию солнечного света, создаст во внешней цепи постоянный электрический ток.

Читайте также:  В России сконструировали дрон, способный переносить тяжелые объекты

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Применение гибких солнечных батарей

Здесь вы узнаете:

  • Устройство и работа модулей гибких солнечных батарей
  • Преимущества и недостатки
  • Где и как применяют солнечную энергию
  • Выбор
  • Инструкция по монтажу солнечных батарей на крыше

Гибкие солнечные батареи – современные энергосберегающие конструкции для преобразования солнечной энергии в электрическую. За счет особенности формы, такие батареи можно размещать на разных поверхностях.

Устройство и работа модулей гибких солнечных батарей

Гибкая солнечная панель устроена следующим образом: тонкая подложка покрыта кремниевым полупроводником. Толщина панели с напылением составляет не более 1 мкм. Полупроводник нагревается солнцем, в результате чего электроны перемещаются в заданном направлении. К элементам монтируют выводы и формируют батарею. Для работы такой мобильной электростанции используют солнечную энергию.

Крупногабаритные, с маленьким КПД, солнечные батареи ушли в прошлое. Современным моделям не требуется максимальное количество солнечного света, а сами конструкции стали легкими, гибкими, мобильными, их можно свернуть в трубку и взять с собой в поход.

В настоящее время аморфный кремний заменяют сульфиды и теллуриды кадмия, медно-галлиевые и индиевые диселениды, полимерные соединения.

Для повышения КПД современные технологии позволяют выпускать многослойные полупроводниковые конструкции. Каскадное строение панели дает возможность преобразовывать отраженный свет несколько раз, что доводит их работоспособность почти до кристаллических вариантов.

Несмотря на то что устройство выглядит довольно просто, для подачи тока в сеть необходимы дополнительные составляющие:

  • Аккумулятор, накапливающей энергию. Он нужен при перепадах напряжения.
  • Инвертор, переводящий постоянный ток в переменный.
  • Система для корректировки заряда аккумулятора.

Преимущества и недостатки

Гибкая солнечная панель, благодаря своей мобильности, имеет преимущества над другими видами батарей.

К ее достоинствам относится:

  • Надежность изделия обеспечена мерами, предохраняющими от механического разрушения, воздействия влаги. Легкий вес и большая площадь позволяет панели оставаться невредимой при падении с многометровой высоты. Большинство конструкций оснащены чехлами.
  • Ультратонкая панель имеет небольшую массу, 6-ваттная батарея весит менее 300 грамм, тогда как кристаллическая таких же параметров – на 100 г больше.
  • Эффективность работы пленочных моделей составляет 15%, кристаллических – 20%. Но в пересчете КПД на массу тела, солнечная панель имеет преимущества.

К недостаткам можно отнести цену, которая превышает стоимость жесткой батареи. Пока еще не слишком большой спрос удерживает ценовую политику. Постепенно ситуация в этом отношении будет улучшаться.

Где и как применяют солнечную энергию

Гибкие панели применяются в разных сферах. Прежде чем составлять проект энергообеспечения дома при помощи этих солнечных батарей, выясните, где они применяются и каковы особенности их использования в нашем климате.

Область применения солнечных батарей

Применение гибких солнечных батарей очень широкое. Они с успехом используются в электронике, электрификации зданий, автомобиле- и авиастроении, на космических объектах.

В строительстве такие панели используют для обеспечения жилых и промышленных зданий электричеством.


Солнечная энергия может быть единственным источником электричества, а может дублировать традиционную схему электроснабжения, чтобы на случай недостаточной эффективности в определенный период дом не остался обесточенным

Портативные зарядные устройства на основе гибких солнечных элементов доступны каждому и продаются повсеместно.

Большие гибкие туристические панели для добычи электроэнергии в любом уголке Земного шара очень популярны среди путешественников.

Очень необычная, но практичная идея – использовать в качестве основы для гибких батарей дорожное полотно. Специальные элементы защищены от ударов и не боятся больших нагрузок.


Гибкие батареи хороши еще тем, что могут быть применены практически в любых ситуациях. Их можно без труда разместить на крыше автомобиля или корпусе яхты

Эта идея уже реализована. «Солнечная» дорога обеспечивает энергией окрестные деревни, при этом не занимая ни одного лишнего метра земли.

Особенности применения гибких аморфных панелей

Те, кто планирует начинать использование гибких солнечных панелей в качестве источника электроэнергии для своего дома, должны знать особенности их эксплуатации.

Прежде всего пользователей волнует вопрос, а что делать зимой, когда световой день короткий и электричества не хватит на функционирование всех приборов?

Да, в условиях пасмурной погоды и короткого светового дня производительность панелей снижается. Хорошо, когда есть альтернатива в виде возможности переключения на централизованное электроснабжение. Если ее нет, нужно запасаться аккумуляторами и заряжать их в те дни, когда погода благоприятная.

Интересная особенность солнечных батарей заключается в том, что при нагревании фотоэлемента его эффективность существенно снижается.


В летний зной панели раскаляются, но работают хуже. Зимой, в солнечный день фотоэлементы способны улавливать большее количество света и преобразовывать его в энергию

Число ясных дней в году зависит от региона. Разумеется, на юге использовать гибкие батареи рациональнее, поскольку солнце там светит дольше и чаще.

Так как в течение дня Земля меняет свое положение относительно Солнца, панели лучше располагать универсально – то есть с южной стороны под углом около 35-40 градусов. Такое положение будет актуальным как в утренние и вечерние часы, так и в полдень.

Выбор

Одним из важных критериев выбора являются климатические условия местности, в которой будут установлены гелиопанели. Учитывается количество солнечных дней в году и длина самого дня. Исходя из этих данных, определяется мощность электроэнергии, которую должна вырабатывать батарея в час или сутки. Для северных районов подойдет текстурированное стекло, оно эффективно справляется с работой даже в пасмурные дни. Модули из микроморфного кремния не требуют точной ориентации на солнце, их суммарная годовая мощность превосходит другие тонкопленочные батареи. На них часто останавливают свой выбор жители районов с малой освещенностью.

Читайте также:  В космической отрасли в скором времени появятся 3D-принтеры

Выбирая модуль для дома, необходимо продумать, какие электроприборы будут востребованы, хватит ли для них мощности предполагаемой покупки.

Нужно заранее определиться с местом для солнечных панелей и предусмотреть резервную территорию, если понадобится нарастить мощность.

При покупке учитывается тип конструкции, материал, толщина фотоэлемента, производитель модуля – все это влияет на цену, качество и длительность работы. Не обязательно переплачивать за иностранные бренды, хорошо себя зарекомендовали модули российского производства, ориентированные на наши климатические условия.

Для расчета количества модулей, следует учитывать, что семья из 4 человек, в среднем, потребляет 200–300 кВт электроэнергии в месяц. Солнечные панели вырабатывают с одного квадратного метра примерно от 25 Вт до 100 Вт в сутки. Для полного удовлетворения дома в потребностях электричества, понадобится 30–40 секций. Оснащение солнечными батареями обойдется семье около 10 тысяч долларов. Устанавливать панели следует на южную сторону крыши, куда попадает максимальное количество солнечных лучей.

Чтобы определиться с выбором, следует понять, какой тип модуля больше подходит покупателю:

  • Монокристаллические фотоэлементы стоят 1,5 доллара за Вт. Они имеют меньшие размеры и более эффективны, чем другие виды подобных батарей. Их общее покрытие занимает меньше места. Учитывая мощность и качество, лучше сделать выбор в их пользу. Единственным минусом является высокая стоимость.
  • Поликристаллические батареи стоят 1,3 доллар за Вт. По мощности они уступают монокристаллическим, но и оцениваются дешевле. Бюджетные возможности привлекают покупателей, к тому же последние разработки подобных батарей сильно приблизили их КПД к монокристаллическим аналогам.

  • Солнечные тонкопленочные панели имеют меньше мощности на один квадратный метр, чем предыдущие модели. Ситуацию выравнивает появление на рынке модулей из микроморфного кремния. Они вырабатывают хорошую суммарную мощность за годовой отрезок времени, отлично себя зарекомендовали в работе видимого и инфракрасного спектра. Для них не важна привязанность к солнечным лучам. Срок эксплуатации батарей составляет 25 лет. Модули имеют недорогую технологию производства, это сказалось на их стоимости – 1,2 доллара за Вт.
  • Большой интерес представляет собой гибридная панель, так как она генерирует тепловую и электрическую энергию. Конструкция соединяет в себе коллектор тепла и элементы фотоэлектрической батареи.

По описанию солнечных батарей видно, что для территорий с малой освещенностью больше подойдут панели микроморфного кремния, южные районы могут воспользоваться поликристаллическими батареями. Для тех, кто не стеснен материально, отличным выбором станут более мощные монокристаллические фотоэлементы.

Сегодня еще остаются претензии к гибким солнечным панелям, но завтрашний день, несомненно, за ними. Их активное усовершенствование приводит к снижению стоимости, они уверенно вытесняют кристаллические аналоги из промышленной и бытовой сферы деятельности человека.

Инструкция по монтажу солнечных батарей на крыше

Если вы решили, что гибкие солнечные батареи на основе аморфного кремния – это то, что вам нужно для обеспечения электричеством частного дома, приступайте к планированию работ.

Подберите подходящее оборудование и прикиньте примерное количество панелей. Затем ознакомьтесь с правилами монтажа и последующего обслуживания солнечных элементов.

Но помните, что использование традиционных кремниевых поли- и монокристаллических аналогов пока гораздо продуктивнее.

Расчет количества панелей

Любые работы начинаются с проекта. Для проектирования нужно сделать необходимые расчёты, а именно:

  • суточное потребление электроэнергии;
  • суммарную необходимую мощность фотоэлементов;
  • емкость аккумуляторов;
  • количество панелей.

Самое простое – посчитать потребление электроэнергии. Для этого нужно учесть абсолютно все без исключения электроприборы, которые вы используете или теоретически можете использовать.

Простой пример:

  • холодильник – 200 Вт;
  • компьютер – 300 Вт;
  • телевизор – 150 Вт;
  • лампочки экономные – 5 штук по 20 Вт.

Мощность каждого прибора обязательно указывается в его документации или на корпусе. После сложения всех данных получаем 750 Вт. Исходя из этого значения подбирается инвертор – прибор, преобразующий постоянный ток в переменный с нужной частотой.

Обязательно сделайте небольшой запас и выберите инвертор на 0,5 кВт мощнее расчётного значения. То есть для суммарной мощности 0,75 кВт подойдет прибор не слабее 1,25 кВт.


Для правильного подключения солнечные батареи соединяют с аккумуляторами через контроллер. Не перепутайте контакты – плюс к плюсы, минус к минусу. От аккумулятора ток направляется к инвертору, а затем – к электроприборам

После необходимо подобрать аккумуляторные батареи. Емкость аккумулятора (например, 200 А∙ч) показывает, ток какой силы будет выдаваться при заданном напряжении в течение часа.

Посчитать нужную емкость можно, разделив суммарную мощность потребителей на выходное напряжение солнечной батареи. В нашем примере используем 12-ти вольтовые аккумуляторы. 750 /12 = 62,5 А∙ч.

Но подобная формула не совсем верна, поскольку большинство батарей нельзя разряжать до 0. Есть определенное ограничение, например 40%. Если уровень заряда опускается ниже, это существенно сказывается на сроке службы и качестве работы аккумулятора.

Этот показатель тоже нужно добавить в формулу:

750 Вт/(12Вх0,4)=156,25 А∙ч.

Чтобы добиться такой емкости, можно объединить в систему группу из 2 батарей по 100 А∙ч каждая.

Количество панелей рассчитывается исходя из мощности выбранной модели и региона, в котором они будут установлены. Значение региона сложно переоценить.

В идеале нужно найти значения дневного уровня солнечной радиации для вашей местности. Для достоверности берется минимальное значение за год, ориентировочно – в конце декабря.

Умножив этот показатель на количество календарных дней месяца, получаем количество киловатт, которое приходится на 1 м2 гибкой солнечной батареи за декабрь. Для примера, в Москве это 0,33х31=10,23 кВт/м2, а для Сочи – 1,25х31=38,75 кВт/м2. Этот показатель называется количеством пикочасов.

Затем из условных максимальных 0,75 кВт, потребляемых всеми приборами одновременно, высчитываем среднемесячное потребление – около 25 кВт. За месяц наши гибкие батареи должны выработать не меньше 25 000 Вт, а лучше сделать небольшой запас и округлить до 30 кВт.

Следовательно, на 1 пикочас в Москве должно получаться 30/10,23 = 2,93 кВт. Если выбранные панели обладают мощностью 150 Вт, то посчитать их количество не трудно: 2,93/0,15= 20 штук.

После таких нехитрых расчетов вы сможете подобрать подходящий инвертор, контроллер, аккумулятор и сами гибкие фотоэлектрические панели в нужном количестве.

Читайте также:  Стало известно, провоцируют ли мобильные телефоны рак

Правила монтажа

Установка гибких солнечных элементов может быть осуществлена вами самостоятельно.

Для этого стоит определиться, где именно вы расположите свои панели:

  • на крыше здания;
  • на фасаде дома;
  • на отдельно стоящей конструкции;
  • комбинированная схема.

Самый популярный вариант – на крыше. Если форма или конфигурация кровли не позволяет этого сделать, лучше построить дополнительный каркас, на котором разместить батареи. Это более затратно, но, если крыша затенена или труднодоступна, этот вариант становится рациональным.

Расположение на фасаде используют тогда, когда места на крыше не хватает. Панели могут стать частью дизайнерской задумки и играть роль украшения дома

Гибкие солнечные фотоэлектрические элементы с нижней стороны имеют липкий смолянистый слой.

Достаточно снять защитную пленку и приклеить панель в выбранном месте. Разумеется, перед монтажом поверхность нужно очистить и вымыть.


Никакого специализированного инструмента для монтажа не нужно. Главное, позаботиться о своей безопасности во время работы на крыше. Так же очень важно соблюдать схему подключения оборудования и не нарушать последовательность

С одной стороны модуль солнечной батареи имеет 2 выведенных кабеля. Каждая панель располагается так, чтобы эти провода можно было в последствии объединить одной шиной для последовательного подключения.

Шаг #3. Уход за системой после установки

После установки гибких солнечных элементов за ними нужно будет постоянно ухаживать и следить, иначе их эффективность может резко снизиться. Главное – содержать панели в чистоте.

Пыль, грязь, птичий помет – все эти факторы снижают производительность системы, поскольку ограничивают поглощение солнечного света фотоэлементами.

Солнечные батареи нужно протирать по мере загрязнения. Именно поэтому размещать их в труднодоступных местах на сложной кровле не рекомендуют.

Если ваша система не может обслуживаться вами самостоятельно, всегда можно найти исполнителя с соответствующей техникой и оборудованием. Разумеется, это будет стоит дороже.


Мыть солнечные батареи на основе аморфного кремния, как и жесткие аналоги, можно обычной влажной губкой или тряпкой из микрофибры. Панель не боится воды (все-таки это оборудование устанавливается на улице), если мыть их регулярно, они прослужат дольше

Еще одна проблема, актуальная для наших регионов – снег. В зимнее время батареи засыпаются снегом и перестают функционировать. Осадки нужно постоянно счищать, но не слишком грубо, иначе можно повредить само оборудование.

КПД солнечных батарей — обзор самых эффективных модулей

Обновлено: 7 января 2021

  • КПД у разных типов солнечных панелей
  • Новый мировой рекорд: эффективность солнечных батарей повысили до 29,15%
    • Виды солнечных фотоэлементов и их КПД
    • От чего зависит эффективность?
    • Срок службы и окупаемость
    • Самые эффективные солнечные батареи
  • Исследования и разработки для повышения КПД
  • Видео-инструкция по сборке своими руками
  • Цены и где лучше купить солнечные батареи

КПД у разных типов солнечных панелей

Существует несколько разновидностей солнечных модулей, которые изготавливаются по собственным технологиям и обладают определенными параметрами. КПД солнечных панелей определяет их способность преобразовать солнечную энергию в электрический ток. Расчет производится путем деления мощности энергии, вырабатываемой панелью, на мощность потока света, падающего на рабочую поверхность.

Показатели панелей изначально определялись при стандартных лабораторных условиях (STS):

  • уровень инсоляции — 1000 вт/ м2
  • температура — 25°

Большинство современных производителей производят тестирование каждой собранной батареи и прилагают результаты к документации при продаже. Это дает более полную и корректную информацию о каждой панели, поскольку в процессе изготовления возможны некоторые отклонения от технологических нормативов. Поэтому сравнение любых двух (или более) панелей всегда выявляет небольшое расхождение демонстрируемых параметров.

Практически любые отклонения в первую очередь отражаются на эффективности, т. е. на КПД солнечной батареи. Из-за этого все разновидности не имеют четко определенного значения. Обычно указывают довольно широкий диапазон, который может давать заметную разницу параметров солнечных модулей, изготовленных по одинаковой технологии.

Все виды фотоэлементов обладают определенными свойствами, определяющими эффективность солнечных батарей. Каждая разновидность имеет свои пределы возможностей, обусловленные строением и составом полупроводников.

Новый мировой рекорд: эффективность солнечных батарей повысили до 29,15%

Научно-исследовательская группа Helmholtz-Zentrum Berlin (HZB) описала в журнале Science разработку тандемного солнечного элемента из перовскита и кремния. Его КПД составил 29,15%. На текущий момент — это новый мировой рекорд. Предыдущие показатели КПД были в районе 28%. Исследователи планируют довести эффективность тандемного солнечного элемента до 30% и даже превысить этот показатель.

Для солнечных элементов базовым материалом является кремний, а разработки с использованием перовскита (титаната кальция) ведутся параллельно. Ученые думают, что возможности перовскита еще не раскрыты и используя оба материала, они получают прирост эффективности.

Солнечные элементы, состоящие из двух полупроводников с различной шириной запрещенной зоны, способны демонстрировать высокую эффективность по сравнению с отдельными элементами, так как тандемные элементы полнее используют солнечный спектр. В частности, обычные кремниевые солнечные элементы главным образом эффективно преобразуют в электрическую энергию инфракрасную часть солнечного спектра, в то время как соединения перовскита могут эффективно преобразовывать видимую часть спектра, повышая КРД тандема.
Использование перовскита и кремния не увеличивает стоимость солнечных панелей.

Виды солнечных фотоэлементов и их КПД

Существуют разные виды солнечных батарей:

  • кремниевые
  • теллур-кадмиевые
  • из арсенида галлия
  • из селенида индия
  • полимерные
  • органические
  • комбинированные, многослойные

Самые эффективные солнечные панели из тех, что находятся в серийном производстве — кремниевые.

Их выпускают в двух видах:

  • монокристаллические. Изготавливаются из тонких пластинок, срезанных с цельного (монолитного) кристалла кремния. Считается, что это — лучшие солнечные панели, демонстрирующие КПД от 17 до 22 %
  • поликристаллические. Заготовкой для этих элементов является брикет кремния, который был расплавлен и разлит по формам. Такие панели обладают немного сниженными показателями по всем позициям, чем монокристаллические. Их КПД находится в диапазоне 12-17 %

Есть еще одни современные солнечные батареи с высоким КПД — это панели на основе селенид-индия. Они способны выдать КПД 15-20 %. Несколько меньшими качествами обладают элементы из теллурида кадмия — не более 10-12 %.

Остальные виды значительно уступают лидерам — аморфные и полимерные элементы демонстрируют КПД не более 5-6 %. Необходимо учитывать, что приведенные показатели — усредненные. У разных производителей есть образцы, превышающие обычные нормы эффективности. Это не меняет общей картины, но демонстрирует необходимость совершенствования технологий, разработки новых методов производства фотоэлементов.

Читайте также:  Samsung, Intel и TSMC не хватает микрочипов для оборудования

От чего зависит эффективность?

КПД солнечных фотоэлектрических установок составляет лишь малую часть от теоретически возможных показателей. Расчетный КПД доходит до 80-87 %, но изъяны технологии, недостаточная чистота материалов и неточность сборки элементов существенно снижают эти значения. Основная проблема кремниевых элементов заключается в способности поглощать лучи только инфракрасного спектра, а энергия ультрафиолетовых участков остается неиспользованной.

Проблема состоит в дороговизне процессов очистки, выращивания кристаллов и прочих тонких процедур, без которых ожидаемого эффекта не удастся добиться. Все солнечные панели с высоким КПД отличаются высокой стоимостью, что делает их недоступными для массового пользователя.

Необходимо учитывать также погодные и климатические условия. Самая производительная система не сможет демонстрировать высокие результаты, если источник энергии скрыт за тучами, или находится низко над горизонтом. Этот фактор не подлежит регулированию, единственным способом борьбы с ним может стать повышенная эффективность солнечных панелей.

Некоторые разновидности фотоэлементов способны вполне стабильно вырабатывать энергию в пасмурную погоду, например, тонкопленочные виды. Однако, их производительность невысока и не дает нужного количества энергии. Чем выше КПД батарей, тем сильнее падает количество вырабатываемой энергии при появлении облачности.

Ежегодно появляются заявления от различных компаний или групп ученых о разработке высокоэффективных образцов солнечных панелей, стабильно работающих в сложных условиях. Однако, в продаже до сих пор есть только привычные кремниевые или пленочные разновидности, а новинок не видно. Причиной этого является слишком высокая себестоимость производства и нестабильность результатов технологий, вынуждающие изготовителей пока отказываться от недоработанных новшеств.

Срок службы и окупаемость

Большинство солнечных панелей способны работать по 25 лет и более. Однако, первоначальные характеристики со временем ухудшаются, происходит падение производительности и, как следствие, уменьшение КПД. Факторы, влияющие не длительность эксплуатации фотоэлементов:

  • тип конструкции. Чем выше изначальная производительность, тем более высокие результаты панель будет показывать после многолетней службы
  • условия эксплуатации. В регионах с сильными среднесуточными и среднегодовыми перепадами температур ресурс панелей быстро уменьшается. Происходит физический износ полупроводников, нарушается прочность соединения слоев, образующих p-n переход. Все эти факторы отрицательно влияют на КПД солнечных модулей

Окупаемость панелей в первую очередь зависит от инсоляции — количества солнечной энергии, доступной фотоэлементам. Здесь необходимо учитывать следующие факторы:

  • продолжительность светового дня
  • положение солнца над горизонтом
  • погодные условия в регионе

Практика показывает, что средний процент деградации солнечных батарей составляет 0,6 % в год. Однако, к естественным процессам прибавляются внешние воздействия — температурные, механические и т.п. Поэтому производители обычно гарантируют, что в течение 10 лет эксплуатации производительность не упадет больше, чем на 10 %.

Вопрос окупаемости солнечных панелей всерьез никем не рассматривается. Существуют приблизительные расчеты, показывающие количество выработанной энергии и ее среднюю стоимость в течение 10, 25 лет. Эти данные не способны показать реальной картины, поскольку все комплексы работают в собственных условиях, подвергаются тем или иным воздействиям и не могут гарантировать заданной производительности.

Специалисты утверждают, что для некоторых регионов окупаемость солнечных батарей никогда не наступает, в других местностях она составляет около 10 или 15 лет.

Подробные исследования не производятся, или ведутся только для данного района. Если необходимо узнать технико-экономические показатели СЭС, приходится каждый раз производить индивидуальный расчет для данных условий, моделей солнечных модулей и прочих факторов воздействия.

Самые эффективные солнечные батареи

Обычный пользователь не старается глубоко вникнуть в теорию, поэтому он чаще всего задает вопрос — хочу купить солнечные панели, какие лучше? Вопрос простой, но ответить на него однозначно крайне сложно. Все зависит от возможностей и потребностей покупателя.

Споры о том, какие солнечные батареи самые эффективные ведутся с самого начала их использования. Несмотря на приоритет кристаллических кремниевых конструкций, нередко впереди оказываются другие виды панелей. Есть рекордсмены в этой области, например, фирма Sharp объявила о создании панелей с КПД 44 %. Эта же фирма создала модули с эффективностью 37,9 %. Есть образцы от других разработчиков с КПД около 32 %. Все эти модели весьма дороги и в массовое производство пока не поступают. Нерентабельность — основная проблема развития солнечных модулей.

Исследования и разработки для повышения КПД

Наиболее перспективным направлением исследований считается создание многослойных панелей. Основной упор делается на возможность получения энергии от инфракрасных и ультрафиолетовых лучей, которые во многом более активны, чем видимые части спектра. Работы ведутся и в области очистки кремниевых структур, создания наиболее однородных и чистых кристаллов.

Еще одним направлением является создание максимально плотных и ровных соединений полупроводников. Электрический ток возникает на границе двух материалов, и, если поверхность обоих изобилует впадинами и прочими изъянами, эти участки исключаются из общей рабочей зоны. Проблема технически сложная, поскольку речь идет о микронной точности шлифовки. Для промышленного производства эти методики пока слишком сложны, а цены на панели будут недоступны рядовым покупателям. Процесс исследований происходит непрерывно, поэтому ожидать положительных сдвигов можно в любой момент.

Видео-инструкция по сборке своими руками

Солнечные батареи: классификация + обзор панелей отечественных производителей

Совсем недавно автономные системы энергообеспечения домов казались фантастикой. Сегодня они уверено входят в нашу жизнь. Рачительные европейцы уже довольно давно используют так называемые солнечные батареи для обеспечения своего жилья электроэнергией. В России такие системы пока еще только набирают популярность. Связано это с достаточно высокой стоимостью оборудования. Однако технологии его производства совершенствуются, и цена на устройства понемногу падает, делая их все более доступными для покупателей. Какие панели выбрать для частного дома? Давайте разбираться.

Читайте также:  Создана система, способная фильтровать информацию с первого раза

Принцип действия солнечных батарей

Устройства, преобразующие в электроэнергию солнечный свет, работают по довольно простому принципу. Чтобы его понять, достаточно вспомнить школьный курс физики. В частности освежить знания о том, что такое p-n переход. Именно он способен преобразовывать энергию света в электрическую. Это явление ярко иллюстрирует опыт с транзистором со спиленной крышкой. Свет падает на p-n переход, а подключенный к нему вольтметр начинает фиксировать незначительные значения электрического тока. При увеличении площади p-n перехода количество получаемой электроэнергии будет расти.

Принцип работы солнечных батарей основан на преобразовании световой энергии в электрическую. Большая площадь панелей позволяет вырабатывать больше энергии

Все современные фотоэлектрические преобразователи работают с использованием этого принципа. Относительно большие площади пластин с p-n переходами позволяют получать достаточное количество электроэнергии. Постоянному усовершенствованию подвергаются материалы и конструкция, благодаря чему растет коэффициент фотоэлектрического преобразования, он же КПД устройства. Величина напряжения и выходного тока солнечной батареи напрямую зависят от степени внешней освещенности устройства.

Типы фотоэлектрических преобразователей

Количество разновидностей современных солнечных батарей приближается к десятку. Каждая вариация имеет свои особенности. Все их можно условно поделить на две большие группы — кремниевые и полимерные пленочные. Рассмотрим более подробно каждую из них.

Кремниевые солнечные батареи

Устройства вырабатывают постоянный ток, который появляется вследствие попадания на кремниевую или кремневодородную пластину солнечного излучения. Особенности материала таковы, что лучи солнца, попадающие на него, сдвигают электроны с орбит атомов. Освобожденные электроны образуют электрический ток. Такие устройства отличаются максимальной эффективностью, но достаточно сложны в изготовлении, что делает их недешевыми. Существует несколько разновидностей кремниевых батарей.

Вид #1 — монокристаллические преобразователи

Отличительная особенность элементов такого типа – направленность светочувствительных ячеек строго в одну сторону. С одной стороны, это очень хорошо, поскольку позволяет получать наиболее высокий из всех аналогичных систем КПД. У монокристаллических преобразователей он достигает 22%. Однако для работы панель должна всегда быть развернута к солнцу, иначе энергоотдача резко снижается.

Рассеянный свет на закате или рассвете, в пасмурные дни дает очень небольшой результат, что делает монокристаллические преобразователи хорошим выбором для южных районов, где много солнечных дней. Внешне такие системы легко отличить по скошенным углам панелей, что обусловлено особенностями их изготовления, и глубокому черному цвету, который дают направленные в одну сторону ячейки.

Монокристаллические модули отличаются наиболее высоким КПД. Они состоят из ориентированных строго в одну сторону кристаллов кремния

Вид #2 — поликристаллические батареи

На пластинах расположены разнонаправленные кристаллы кремния, что дает более низкий по сравнению с монокристаллами КПД. Он составляет порядка 18%. Внешний вид панелей так же отличается. Они представляют собой пластины правильной квадратной формы темно-синего цвета. Неоднородность их структуры и цвета объясняется тем, что в их состав входят разнородные кристаллы кремния, а кроме того присутствуют некоторые примеси.

Поликристаллические солнечные батареи характеризуются неоднородной структурой и наличием ориентированных в разные стороны кристаллов кремния

Для изготовления поликристаллических панелей может использоваться не только первичный кремний, но и подготовленное вторичное сырье. Это объясняет наличие в оборудовании некоторого количества дефектов. Главное достоинство таких пластин – хорошая энергоэффективность при рассеянном свете, что делает их незаменимыми для местностей, где пасмурная погода не редкость.

Вид #3 — аморфные кремниевые панели

Аморфные элементы представляют собой очень тонкие слои кремния, которые получают напылением материала в вакууме. Основой становится фольга из высококачественного металла, пластик или стекло. КПД таких устройств невелик и составляет всего 6%. Это объясняется более быстрым, чем у пластин кристаллического вида, выгоранием кремниевых слоев под воздействием солнечной радиации. Как показывает практика, эффективность аморфных панелей через два месяца эксплуатации понижается примерно на 20%. По прошествии полутора-двух лет батарея может просто выйти из строя.

Модули, выполненные из аморфного кремния, отличаются невысоким КПД, зато они очень эффективно работают в условиях рассеянного светового потока

Однако их применение вполне оправданно. Светочувствительные ячейки ориентированы хаотично, что существенно повышает эффективность устройств в пасмурную погоду и при рассеянном свете. Кроме того степень поглощения поступающего светового потока у аморфных панелей почти в двадцать раз выше, чем у аналогичных кремниевых устройств-конкурентов. Безотходная технология производства таких батарей позволяет существенно снижать их стоимость. Внешне аморфные пластины можно отличить по темно-серому цвету.

Вид #4 — гибридные фотопреобразователи

Такие панели объединяют микрокристаллы и аморфный кремний. Свойства гибридных преобразователей светового потока очень близки к свойствам поликристаллических элементов. Единственная разница в том, что их производительность в условиях рассеянного света намного выше. Еще одно отличительное свойство таких панелей – способность преобразовывать в электрический ток не только излучение ультрафиолетового спектра, но и лучи инфракрасного диапазона.

Полимерные пленочные солнечные преобразователи

Перспективная альтернатива кремниевым батареям. Представляют собой пленку, состоящую из полимерного активного слоя, алюминиевых электродов, органической гибкой подложки и особого защитного слоя. Пленочные фотоэлементы объединяются между собой, в результате чего получается рулонная солнечная батарея. Такие устройства очень гибкие, компактные и легкие. Их стоимость несколько ниже кремниевых аналогов, поскольку в производстве не используется дорогостоящий кремний. Кроме того устройства более экологичны, поскольку оказывают на окружающую среду меньшее влияние.

КПД таких устройств невысок. Он составляет порядка 6,5%. В промышленных масштабах первые полимерные батареи начали выпускать в Дании. Процесс производства заключается в особой многослойной печати фотоэлемента на специальную гибкую пленку. Ее впоследствии можно резать, скручивать и изготавливать солнечные батареи практически любых размеров. Стоимость пленочных элементов на порядок ниже, чем у кремниевых. Однако найти такие панели в продаже пока еще очень сложно. Производство находится в ранней стадии развития.

Для изготовления полимерных солнечных модулей не нужен дорогостоящий кремний, что существенно удешевляет производство

Что предлагает рынок — обзор производителей

На российском рынке в большом ассортименте представлены поли- и монокристаллические панели. Большая их часть произведена в Китае, что не удивительно, поскольку эта страна – лидер по производству и продаже различных систем генерации солнечной энергии. На рынке так же представлена немецкая продукция от компаний SCHOTT и Calixo, японская от фирмы SHARP и товары российских компаний. Последние чаще всего занимаются сборкой солнечных элементов из комплектующих китайского производства.

Читайте также:  Российская армия обеспечена сверхточными 3D-картами

Тем не менее, в России есть предприятия, производящие фотопреобразователи. Завод «Хевел», расположенный в Новочебоксарске, выпускает тонкопленочные гибридные панели. Завод «Сатурн» в Краснодаре специализируется на солнечных батареях, работающих на арсениде галлия. Последние большей частью предназначены для космической промышленности. Бытовые модули производят два предприятия: «Завод металлокерамических приборов» в Рязани и «Телеком-СТВ» в Зеленограде.

Отечественные производители выпускают различные типы кремниевых солнечных батарей

Завод в Рязани производит два основных типа устройств:

  • RZMP-130-Т с диапазоном мощностей от 105 до 145 Вт.
  • RZMP-220-Т с диапазоном мощностей от 200 до 240 Вт.

Устройства состоят из нескольких последовательно соединенных элементов. Панель покрыта высокопрозрачным закаленным текстурированным стеклом и помещена в алюминиевый профиль. Такая конструкция придает батарее прочность и защищает от неблагоприятных атмосферных воздействий. Стоимость таких устройств достаточно высока. К примеру, модель RZMP-130-Т, мощность которой 120 Вт, обойдется покупателю в более чем 16 000 руб.

«Телеком-СТВ» выпускает намного больше различных моделей солнечных батарей. Среди них поли- и монокристаллические модули, специализированные и особые гибкие батареи, а так же монокристаллические панели повышенной эффективности. Выходное напряжение может быть адаптировано как для высоковольтных систем (34-38 В), так и для низковольтных (17-18,5 В).

Кремниевые модули выпускаются в алюминиевой рамке, накрытые специальным текстурированным стеклом. Производитель дает на свои батареи пять лет гарантии и сертифицирует свое оборудование, хотя по закону это делать не обязательно. Зеленоградские панели более легкие и менее габаритные, чем рязанские. Стоимость их почти в полтора раза ниже, несмотря на то, что качество солнечных батарей неизменно высокое.

Солнечные модули на основе аморфного кремния от завода «Хевел» могут работать в различных климатических условиях

Завод «Хевел» единственный в России, выпускающий модули по микроморфной технологии. Это пластины, выполненные на базе аморфного кремния с некоторым количеством вкраплений микрокристаллов. Панели эффективно работают в условиях рассеянного света и уверенно конкурируют с поли- и монокристаллическими батареями. Предприятие только начало выпуск продукции, поэтому найти ее пока можно не во всех магазинах. Стоимость таких панелей достаточно демократична. За устройство мощностью 125 Вт придется отдать порядка 10 000 руб, что несколько выше, чем у основного конкурента предприятия Тайваньского Green Energy Technology. Их продукция с аналогичными свойствами стоит около 7 000 руб.

Ассортимент солнечных батарей очень широк. И только человек, собирающийся приобрести фотопреобразователь, может решить, на каком варианте ему остановиться. При этом стоит учесть и мнение специалистов, которые рекомендуют для обустройства автономного электроснабжения дома остановить свой выбор на поликристаллических модулях. Понятно, что монокристаллические более эффективны, но не нужно забывать, что это достаточно условный показатель. Использование солнечных батарей становится все более популярным. Несмотря на свою дороговизну, эти устройства достаточно быстро окупаются. А главное, они позволяют получать необходимую электроэнергию практически «из ничего».

Солнечная энергия. Преобразование солнечной энергии в электроэнергию.

Людьми солнечная энергия используется в самых разных формах, для отопления и охлаждения помещений, производства питьевой воды дистилляции, дезинфекции, освещения, производства горячей воды и приготовления пищи. Способы использования солнечной энергии ограничены только человеческой изобретательностью.

Солнечные технологии бывают пассивными или активными, в зависимости от способа захвата энергии, которая затем преобразуется, и распространятся.

Активные солнечные технологии

К активным солнечным технологиям относят фотоэлектрические панели и солнечные тепловые коллекторы.

Пассивные солнечные технологии

Пассивные методы включают ориентацию здание к Солнцу, чтобы получать максимальное количество дневного света и тепла, а также выбор материалов с нужными тепловыми свойствами.

Солнечная энергетика сегодня является одним из наиболее перспективных источников альтернативной энергии. В настоящее время уже есть достаточно много конструкций, с помощью которых солнечная энергия преобразуется в электрическую или тепловую.

Широко известен тот факт, что солнце излучает огромное количество энергии. По приблизительным подсчётам авторитетных международных организаций количество энергии, потребляемое сегодня человечеством, колеблется на уровне 245 миллионов баррелей нефтяного эквивалента в сутки, а интенсивность потока солнечного излучения у поверхности Земли, при перерасчёте на всю поверхность, составляет 1,74*Е+17 Вт.

То есть, Солнце отправляет нам энергии приблизительно в 10 500 раз больше, чем мы сегодня потребляем. Солнечная энергия не исчерпаема, поэтому очевидно, что такого количества энергии нам хватит на сотни и даже тысячи лет вперед! С учётом всё большего понимания экономических, экологических и прочих проблем, связанных с использованием традиционных энергоресурсов (уголь, нефть, природный газ), интерес к солнечной энергетике с каждым днем возрастает.

Солнечная энергия, разделение по направлениям

  • гелиотермальная энергетика, где нагрев теплоносителя для отопления и прочих нужд происходит при помощи прямого преобразования солнечного излучения в тепловую энергию
  • получение электроэнергии с помощью тепловых машин, нагрев рабочего тела в которых, происходит за счет солнечной энергии
  • Солнечная энергия преобразуется в электроэнергию с помощью солнечной панели (солнечной батареи)

Солнечные панели

Под солнечной панелью понимают набор, соединённых между собой фотомодулей. Фотомодуль (далее модуль) в свою очередь состоит из фотоэлементов или фотоэлектрических преобразователей (ФЭП).

Из чего состоит солнечная панель

Отдельный фотоэлектрический преобразователь — это полупроводниковый прибор, преобразующий энергию фотонов (энергию света) в электрическую энергию. Преобразование энергии происходит на уровне атомного строения тела. Наиболее распространённый материал для изготовления ФЭП это кремний. Каждый отдельный ФЭП способен вырабатывать напряжение сравнительно малой величины (около 0,5 В), поэтому отдельные элементы собирают в модули, а модули в панели.

В зависимости от задачи энергоснабжения используются различные схемы коммутации солнечных панелей. Например, для зарядки мобильного телефона одна, для работы автономного освещения другая, для работы электросети здания и работы с «зелёным тарифом» третья и т.д. («зелёный тариф» — это специальный тариф, по которому государством закупается электрическая энергия, произведенная на объектах электроэнергетики, которые используют альтернативные источники энергии).

Читайте также:  Виртуальный тест сможет выявлять болезнь Альцгеймера на ранней стадии

В результате преобразования энергии света солнечная панель на своём выходе генерирует постоянное электрическое напряжение для работы в системах с номинальным напряжением, как правило, 12, 24 или 48 вольт.

Преобразование постоянного напряжения в переменное

Хотя внутренние электронные схемы многих потребителей электроэнергии (телевизор, компьютер, музыкальный центр и другие) работают на постоянном напряжении (и для работы имеют встроенные блоки питания), всё же на сегодняшний день, в обычной электрической сети переменное напряжение, и все приборы адаптированы для питания от сети с переменным напряжением. 220 вольт для однофазной сети, либо 380 вольт для трёх фазной сети. Поэтому одних солнечных панелей, с постоянным напряжением, для полноценного обеспечения электроэнергией не достаточно. Дополнительно необходим инвертор — электронное устройство, которое преобразовывает постоянное напряжение в переменное.

Солнечная панель вырабатывает электроэнергию при попадании не её поверхность света, то есть, в тёмное время суток солнечная панель отдыхает. Но, как правило, нам необходима электроэнергия круглые сутки, поэтому в систему солнечных панелей вводиться блок аккумуляторных батарей. По своему назначению он выполняет ту же функцию, что и аккумулятор в автомобиле или батарейка в мобильном телефоне, накапливает электроэнергию в момент её излишка, и отдает в момент её нехватки.

Заряд аккумуляторной батареи от солнечной панели, требует соблюдения определённого алгоритма. Для управления процессом зарядки аккумуляторов, используется электронное устройство – контроллер заряда.

Типовая схема подключения солнечных панелей

Для уменьшения капитальных вложений в систему на солнечных панелях, необходимо использовать электрооборудование с высокой энергоэффективностью. При выборе бытовых электроприборов необходимо обращать особое внимание на класс энергоэффективности. Например, для освещения можно использовать светодиодные лампы, которые в 10 раз эффективнее ламп накаливания, и более чем в 2 раза эффективнее энергосберегающих люминесцентных ламп.

Схема подключения солнечных панелей

Максимальную эффективность солнечные панели имеют при падении солнечных лучей перпендикулярно к поверхности модуля. Так как солнце все время перемещается по небу, для эффективного использования панели возможно применение устройств слежения и поворота панели к солнцу.

При установке солнечных панелей, необходимо знать основные характеристики ФЭП и особенности работы системы на солнечных панелях. В зависимости от материала и технологии изготовления, ФЭП отличаются коэффициентом полезного действия (КПД), устойчивостью к повышению температуры, габаритами, и конечно же стоимостью.

Сегодня оптимальными для применения и самыми распространёнными являются ФЭП из моно- и поли- кристаллического кремния, хотя есть и другие варианты решения (панели на аморфном кремнии, тонкоплёночные панели, нанокристаллические панели и другие).

Моно или поликристалл

Применительно к солнечной панели, КПД — это параметр, который показывает какая часть энергии светового потока преобразовывается в электрическую. Этот параметр будет влиять на суммарную площадь панелей, и как следствие на площадь, которая будет покрыта панелями.

Например, если КПД солнечной панели составляет 12 % и освещается световым потоком интенсивностью 1100 Вт/м2, то выходная мощность этой панели составит 1100 Вт/м2 * 0,12 = 132 Вт с 1 м2 площади солнечной панели.

Устойчивость ФЭП к повышенной температуре подразумевает сохранение солнечной панелью выходных характеристик (напряжения, тока) с увеличением температуры. Рабочие параметры панели рассчитываются при температуре окружающей среды 25°С, с увеличением этого параметра электрические характеристики и срок службы ФЭП изменяются. И если мы говорим о продолжительном сроке эксплуатации в условиях с реальной температурой выше, чем 25°С, то этим параметром пренебрегать нельзя.

К особенностям работы системы также относится место и способ установки панелей. Эти детали влияют на количество оборудования и интенсивность солнечного света для конкретного модуля. Кроме того, количество и модель устройств в системе солнечного электроснабжения, зависит от назначения объекта и потребителя, которому необходимо обеспечить электроснабжение. Например, могут быть варианты: жилой дом, производственный объект, сельскохозяйственный объект, объекты, требующие энергии больше в дневное или ночное время.

С учётом всех перечисленных факторов необходимо иметь в виду, что установка и расчёт системы солнечных панелей должна проводиться специалистом.

Основные преимущества солнечных панелей

  • Высокая надёжность. Конструкция на солнечных панелях не имеет механических, движущихся частей, вследствие чего имеет высокий запас надёжности, что подтверждается использованием в местах, где ремонт практически не возможен – космических системах, и пр.
  • Минимальные эксплуатационные расходы. После монтажа солнечные панели, не требуют большого внимания, регламентных работ и сервисного обслуживания. Это позволяет использовать панели в труднодоступных местах, где обслуживание либо дорого, либо проводить нельзя.
  • Экологическая чистота. При работе солнечных панелей нет никаких вредных выбросов и отходов. Солнечные панели работаю бесшумно.
  • Срок эксплуатации. На сегодняшний день, срок службы солнечных панелей доведён до 20-25 лет.
  • Простота установки. Монтаж системы достаточно прост. Изменение выходной мощности достигается простым добавлением или демонтажем модулей. Другими словами, есть возможность постепенного увеличения мощности по мере необходимости и наличия финансовой возможности.

По известным причинам, интерес к солнечным панелям растёт с каждым годом, отсюда и старание производителей обеспечить рынок. Как отмечают аналитики, сегодня объёмы производства не отвечают потребностям, и хотя производственные мощности увеличиваются с каждым годом, стоимость солнечной панели экономически интересна пока не во всех странах. Производители стремятся оптимизировать стоимость затрат на изготовление солнечных панелей, а возрастающий спрос способствует сближению процессов производства и покупки.

На практике, при определении оценочной стоимости солнечной панели, говорят о стоимости за 1 Ватт электрической мощности. Понимая, что если 1 Ватт стоит условно 2 USD, то панель мощность 10 Ватт стоит около 20 USD, а панель мощностью 100 Ватт около 200 USD. Стоимость солнечной панели постоянно уменьшается, с динамикой 50 USD/Ватт в 70-е годы, до 1,5 USD/Ватт в наши дни. Очевидно, что стоимость солнечной панели будет продолжать уменьшаться.

Так как вся система на солнечных панелях состоит не только из самих панелей, а еще содержит устройства, упомянутые выше, то и стоимость всей установки выше.

Читайте также:  В США компрессоры для лечения гипертонии преобразуют в аппараты ИВЛ

Так как с уменьшением мощности потребителей, уменьшается мощность и стоимость системы электроснабжения на солнечных панелях, эффективно рассматривать работу солнечных панелей с энергосберегающим оборудованием, например применять светодиодные лампы для освещения, тепловые насосы для отопления и индукционные печи для приготовления пищи.

Развитие солнечной энергетики

Как уже отмечалась, цифры отражающие сегодня характеристики развития солнечной энергетики стабильно растут. Солнечная панель давно перестала быть термином узкого круга технических специалистов и сегодня о солнечной энергетике не только говорят, но и получают прибыль от реализованных проектов.

В сентябре 2008 года было завершено строительство солнечной электростанции расположенной в Испанском муниципалитете Ольмедилья-де-Аларкон. Пиковая мощность электростанции Olmedilla достигает 60 МВт.


Солнечная станция Olmedilla

В Германии эксплуатируется солнечная станция Waldpolenz, которая находится в Саксонии, в районе городов Брандис и Бенневиц. Пиковая мощность этой станции составляет 40 МВт, благодаря чему она входит в число крупнейших солнечных электростанций мира.


Солнечная станция Waldpolenz

Неожиданно для многих, хорошими новостями начала радовать и Украина. Согласно данным ЕБРР, Украина уже в ближайшее время может занять место лидера среди экологически чистых экономик Европы, особенно в отношении рынка солнечной энергии, который является одним из наиболее перспективных рынков возобновляемых источников энергии.

Солнечные батареи – альтернативная энергия

Независимый от сторонних ресурсов источник электрической энергии – это солнечная батарея. Для её функционирования нужен только свет центральной звезды нашей системы планет. Установки применяются повсеместно и стремительно набирают популярность, составляя конкуренцию центральным ЛЭП. Комплект солнечных батарей для частного применения можно приобрести в сборке и пользоваться энергией светила по своим потребностям.

Необходимая альтернатива

Солнечные панели изначально предназначались как альтернативный источник получения электричества для снабжения местности, где отсутствует линия электропередачи или поставки ресурса не являются постоянными и зависят от ряда факторов. Так батареи активно применяются:

  • В отдалённых и не электрифицированных регионах с достаточной инсоляцией;
  • В многоквартирных домах, в социальных учреждениях и на предприятиях в качестве резервного источника электроснабжения;
  • В сельской местности солнечная электростанция дополняет автономное энергоснабжение;
  • Энергия Солнца иногда используется как средство нагрева воды в системах отопления и водоснабжения;
  • Космические станции работают на преобразованной солнечной энергии.

Полученное электричество расходуется на необходимые нужды: освещение, работа бытовых приборов и производственного оборудования, снабжение котельных установок.

Сфера применения систем переработки солнечной энергии на сегодняшний день обширна по нескольким причинам:

  • В комплекте предусмотрен аккумулятор, в котором накапливается энергия, он может быть использован в «тёмный» период или во время отключения основной центральной сети.
  • Отсутствие потребности в сторонних ресурсах, система сама себя обеспечивает. При использовании несколькими абонентами быстро окупается в пересчёте на оплату услуг электроснабжающих организаций.
  • Независимость от внешних факторов, кроме погодных условий. Солнечные батареи будут действительно полезны в регионах, где солнце всё же посещает поверхность Земли.
  • Долгосрочность работы – при правильном уходе и своевременном обслуживании до 20 лет.

Устанавливаются комплекты на отдельные стенды или на крыше дома с солнечной стороны.

Системы солнечных батарей в виду востребованности и создания конкуренции в отрасли заметно упали в цене за последнее десятилетие. При покупке комплекса для частного дома, электричеством в котором будет пользоваться семья из 4-х человек, отбить затраты можно уже через 3,5-4 года.

Разновидности преобразователей и их эффективность

Любая солнечный панель преобразует свет Солнца посредством инвертора – ключевого компонента системы. Он видоизменяет энергию в постоянный ток, который трансформируется модулем в переменный со стандартным напряжением 220 В, необходимым для работы большинства приборов.

Мощность инверторов варьируется в пределах 250…8000 Вт, что необходимо учитывать при выборе. Чем больше максимальная нагрузка напряжения в цепи, тем мощнее должен быть преобразователь.

Самые востребованные соотношения напряжения и мощности для частного хозяйства, жилых домов:

  • 12 В и 600 Вт;
  • 24 В и 600…1500 Вт;
  • 48 В и ≥1500 Вт.

По организации работы преобразователи делятся на несколько видов:

  • Автономные работают внутри единого контура без посторонних ресурсов. Их производительность должна быть рассчитана максимальной нагрузкой на цепь и принята с небольшим запасом для возможности скачка напряжения из-за включения техники-потребителя.
  • Синхронные вырабатывают энергию, накапливают её, а свыше нормы отправляют в электрифицированную сеть. Обнаруженный недостаток в конденсаторе (аккумуляторе) восполняется обратным забором из сети преобразователем. Такая система помогает предотвратить перебои в центральной системе, используется как резерв.
  • Комбинированные системы сочетают функции автономного и синхронного преобразователя.

Преобразователь в комплекте с солнечными батареями для дома создаёт на выходе качественно разные сигналы напряжения, от которых зависит и стоимость устройства:

  • Синусоидальные, самые дорогие, образуют высококачественный ток для подключения крупной бытовой техники – кондиционеров, холодильников, котлов;
  • Прямоугольные служат для питания небольших приборов, например, освещения и других совместимых устройств. Стоимость такого преобразователя сравнительно низкая;
  • Псевдосинусоидальные – это середина между прямоугольными и синусоидальными системами и по качеству, и по цене. К такому можно подключить любую бытовую технику, но качество передачи значительно ниже, чем у первого варианта.
  • Фотоэлектрические (полупроводниковые) преобразователи(ФЭП), трансформирующие солнечную энергию напрямую в электрическую. Несколько объединённых ФЭП – это солнечная батарея.
  • Гелиоэлектростанции (ГЕЭС)установки, работающие на высококонцентрированном излучении для активизации тепловых машин и промышленных установок.
  • Солнечные коллекторы (СК) – это нагревательные установки низкотемпературного типа.

Как солнечную батарею выбрать

При необходимости в использовании автономного источника электроэнергии в первую очередь необходимо рассчитать предполагаемую нагрузку на сеть и определить мощность установки. Благо, производители предлагают готовые системы с солнечными батареями в комплекте и достаточно определить только несколько основных параметров:

  • Мощность и размер панелей;
  • Производительность установки;
  • Требования батарей к инсоляции и температурному режиму.

Разновидности готовых модулей:

  • Монокристаллические из силиконовых ячеек-преобразователей. Они отличаются компактностью и высокой эффективностью – до 22%, соответственно самой высокой стоимостью.
  • Поликристаллические с кремниевым компонентом в составе рабочих секций. Их эффективность не превышает 18%, что ненамного меньше, чем у монокристаллических модулей, но стоимость значительно отличается в меньшую сторону, поэтому такие солнечные батареи выбирают для дачи и частного дома.
  • Аморфные с тонкоплёночными кремниевыми фотоэлементами самые низкоэффективные и одновременно дешёвые. Но у них есть отличительная особенность – способность вырабатывать электричество при малой инсоляции.

Любые панели комплектуются в готовую систему в сопровождении следующего оборудования:

  • Инвертор (преобразователь), трансформирующий свет в электричество;
  • Аккумулятор, накапливающий энергию, он же нивелирует перепады напряжения;
  • Контроллер аккумуляторного напряжения, зарядки и прочих параметров.

Укомплектовать комплекс можно самостоятельно или приобрести его в сборке, где оборудование подобрано правильно с учётом мощностных особенностей каждого компонента.

Монтаж комплекса следует доверять профессионалам – щиты необходимо устанавливать аккуратно посредством специального крепежа.

10 домашних компьютеров начала компьютерной эры

Apple I — один из первых домашних компьютеров

Конец 70-х — начало 80-х годов прошлого века стало в Западном полушарии периодом бурного развития домашних компьютеров. Первым «персональным компьютером» формально считается выпущенный в 1975 году IBM 5100, хотя на практике он таковым не являлся: он был предназначен для научных задач и стоил неподъемную для частных лиц сумму денег. Сам по себе термин « персональный компьютер » или ПК (PC) был предложен компанией IBM и появился вместе с выходом IBM PC (модель 5150). Далее и сама IBM выпускала обновленные модели, и сторонние производители выпускали массу IBM PC-совместимых ( IBM PC compatible ) компьютеров, архитектурно близких к IBM PC, позволяющих запускать их программное обеспечение. Это тема для отдельного материала, а сегодня мы остановимся и вкратце вспомним самые популярные домашние компьютеры (несовместимые с IBM PC).

Commodore 64

Commodore 64 — один из самых легендарных и продаваемых компьютеров того времени, был выпущен в 1982 году американской компанией Commodore International и продавался до 1994. Он был значительно дешевле своих конкурентов IBM PC и Apple ][, но не комплектовался монитором. Этот минус решался благодаря наличию композитного видеовыхода: компьютер можно было просто подключить к телевизору. Помимо цены, на популярность повлияли еще и такие факторы, как 16-цветная графика и отдельный звуковой процессор, чем не могли похвастаться ранние IBM PC и распространение не только в специализированных магазинах.

Компьютер был оборудован 8-разрядным процессором MOS 6510 c частотой 0.9 или 1.02 МГц, в более поздних модификациях были MOS 8500 и MOS 8510. Объем оперативной памяти составлял 64 КБ, объем которой можно было увеличить с помощью специального слота. За графику отвечал специальный процессор VIC II, отображающий 16 цветов, а за звуковые возможности — процессор SID. К Commodore 64 было возможно подключение кас­сетного магнитофона или флоппи-дисковода в качестве накопителя (со временем появился и внешний жесткий диск) и джойстиков, что позволяло использовать компьютер в качестве игровой приставки. Для Commodore 64 было выпущено огромное количество программного обеспечения и игр.

ZX Spectrum

Основным конкурентом предыдущего героя статьи стал ZX Spectrum, он же в народе «Спекки» (Speccy), созданный в 1982 году британской компанией Sinclair Research Ltd. Он и его многочисленные клоны были более популярны в Европе, а в начале 1990-х — и на территории бывшего СССР. Как и Commodore 64, он поставлялся без монитора, подключался к телевизорам и имел сравнительно низкую стоимость. Компьютер работал на 8-разрядном микропроцессоре Zilog Z80 с частотой 3.5 МГц, объем оперативной памяти составлял 16 или 48 КБ. Купив вариант на 16 КБ, пользователь мог проапгрейдить компьютер добавив еще 32 КБ.

В ZX Spectrum была установлена клавиатура состоящая из 40 резиновых многофункциональных кнопок. Компьютер мог выводить на экран 8 цветов с двумя уровнями яркости и однобитный звук через встроенный динамик. В более поздней модели ZX Spectrum 128 для вывода звука появилась отдельная микросхема AY-3-8912. В качестве накопителя компьютер использовал аудиокассеты и дискеты. Было доступно приличное количество периферии, включая принтер, запоминающие и игровые устройства.

Atari 400 и 800

Американская компания Atari, специализирующаяся на играх и игровых приставках, начиная с 1979 года выпустила компьютеры Atari 400 , Atari 800 , серии XL и XE, в основу которых лег 8-разрядный процессор MOS Technology 6502 . Остановимся на классических моделях 400 и 800. Младшая модель оснащалась пленочной клавиатурой и внутренними слотами для памяти, в то время как 800-я имела полноценную клавиатуру, доступные пользователю слоты для ОЗУ и ПЗУ и слотом для картриджей на 8 КБ. Объем оперативной памяти составлял 4 КБ в модели 400 и 8 КБ в 800, позже он был увеличен до 8 и 48 КБ соответственно.

Как и в большинстве компьютеров того времени, предполагалось использовать язык программирования Microsoft BASIC. Версия для процессора 6502 занимала 12 КБ и не помещалась на картридж объемом 8 КБ, в результате была разработана несколько упрощенная версия Atari BASIC. Для подключения периферии использовался собственный разъем Serial Input/Output (SIO), к которому устройства подключались последовательно.

Amiga

Стоит вспомнить серию компьютеров Amiga, в особенности — первую модель Amiga 1000, которая была выпущена в 1985 году и ставший первым в мире домашним компьютером, способным выводить более 16 цветов и работавшим под управлением ОС, поддерживающей многозадачность. Разработка началась в 1982 году компанией Amiga Corporation (изначально называлась Hi-Toro, основана бывшими сотрудниками Atari), которая была куплена Commodore. Компьютер был оснащен процессором Motorola MC68000 с частотой 7.14 МГц, объем оперативной памяти составлял 128 КБ, потом появились варианты с 256 и 512 КБ.

Операционная система AmigaOS первоначально грузилась с дискеты, позже перенесена на постоянный накопитель. Условно делится на Kickstart (системное ПО для загрузки ОС) и Workbench (графическая оболочка). Первоначально Amiga был оборудован одним слотом расширения, позже разработчики решили сделать компьютер максимально расширяемым, для этого был разработан протокол Autoconfig — автоматическое распознавание системой подключаемых плат (прародитель Plug and Play). Компьютер не стал особо популярным из-за малого количества ПО, которое в основном портировалось с других систем и в полной мере не использовало возможности AmigaOS.

В 80-х годах японское отделение компании Microsoft и ASCII Corporation решили создать единый аппаратный стандарт для бытовых компьютеров, в последствии получивший название MSX (Machines with Software eXchangeability). Все аппаратные и программные разработки стандарта MSX разных компаний были взаимно совместимы. Стандарт предполагал использование процессора Zilog Z80 с частотой 3,58 МГц, видеоконтроллера TMS9918 компании Texas Instruments с 16 КБ видеопамяти, звукогенератора AY-3-8910 производства General Instrument (GI) и интерпретатора MSX BASIC. Также были четко сформулированы требования для картриджей расширения и ПО.

Компьютеры стандарта MSX производило большое количество известных брендов, включая Sony, Yamaha, Goldstar (LG) и так далее. До выхода приставки NES (Famicom) производства Nintendo, MSX являлась основной игровой платформой, для которой выпускалось много игр, в том числе и компанией Konami. С середины 80-х годов MSX использовались в компьютерных классах на территории СССР, в том числе и экспортные версии компьютеров Yamaha YIS-503 и YIS-805 с кириллическими символами Ямаха (КУВТ)

Apple ][

Apple II ( или Apple ][) — первый и весьма успешный серийный компьютер компании Apple, впервые представлен в 1977 году на выставке West Coast Computer Fair и стал одним из самых успешных компьютеров того времени. Он поставлялся со встроенной клавиатурой, разъемом для подключения кассетного магнитофона и поддерживал цветной вывод картинки в разных режимах ( текстовый, графический цветной с разрешением 280х192 и 6 цветами и графический низкого разрешения, 40х48, 16 цветов).

Компьютер был оснащен процессором MOS Technology 6502 с тактовой частотой 1 МГц, 4 КБ ОЗУ с возможностью расширения до 48 КБ и 4 КБ ПЗУ с программой мониторинга и интерпретатором Integer BASIC (Basic для целочисленных операций). Звук выводился на встроенный динамик, было предусмотрено 8 разъемов расширения, 1 для дополнительной оперативной памяти, остальные — для внешних устройств.

Tandy (RadioShack) TRS-80

В 1977 году компания Tandy разработала компьютер TRS-80. Реализацией занималась сеть магазинов RadioShack, которой Tandy владела с 1963 года. Собственно, компьютер и продавался под брендом RadioShack TRS-80 (позже Model I). В качестве процессора использовался Zilog Z80 с тактовой частотой 1.77 МГц (позже — Z80A). Объем оперативной памяти составлял 4 КБ, в более поздних моделях — 16 КБ. В качестве носителей использовались монофонические компакт-кассеты, а в комплекте поставлялся магнитофон Radio Shack CTR-41.

Основными достоинствами компьютера были относительно невысокая стоимость, монитор в комплекте (черно-белый), сравнительно небольшие габариты и полноценная клавиатура. Основной проблемой компьютера являлся высокий уровень излучаемых им радиопомех, что со временем стало причиной его отзыва с рынка. Позже были созданы еще несколько моделей, в том числе и с цветным монитором.

BBC Micro

Британская компания Acorn, создавшая в 1981 году домашний компьютер Atom, работала над обновленной версией под названием Proton. В это же время British Broadcasting Corporation (BBC) начинала свой проект BBC Computer Literacy Project о компьютерах, в частности — серии телепередач The Computer Programme, для чего им был необходим компьютер с достаточно широкими (на то время) возможностями, включая программирование , компьютерную графику , звук, работу с текстом , управление внешним оборудованием и так далее. Acorn Proton, в последствии BBC Micro полностью удовлетворил эти потребности.

Как и большинство компьютеров того времени, он был оборудован встроенной клавиатурой, на рынок попал в конце 1981 года и имел высокую популярность у себя на родине. Было две основные модели: Model A и Model B (и ее вариация Model B+), несколько отличавшиеся по мощности. В компьтерах использовались процессоры MOS Technology 6502A в Model A и 6512A в Model B, тактовая частота 2 МГц. Объем ОЗУ составлял 16 и 32 КБ соответственно (64 КБ в Model B+). ПЗУ: 32 и 48 КБ соответственно. Клавиатура состояла из 78 кнопок, за звук отвечала микросхема Texas Instruments SN76489.

Электроника БК

Стоит вспомнить и творения отечественных инженеров, в частности — семейство разработанных в СССР 16-разрядных компьютеров БК (Бытовой Компьютер), которые использовались в учебных и домашних целях и были совместимы по системе команд и частично архитектуре с другими соотечественниками ДВК. Во многом наследовали PDP-11 американской компании DEC. Были выпущены модели БК-0010, БК-0011 и БК-0100, каждая из которых выпускалась в нескольких вариантах.

Они отличались внутренностями, клавиатурой (пленочной или полноценной), наличием интерпретаторов Фокал и BASIC -86 (« Бейсик Вильнюс ») и так далее. Модели с буквой Ш в конце предназначались для учебных целей и КУВТ (комплект учебной вычислительной техники) вместе с ДВК-2МШ или ДВК-3, которые использовались в качестве файлового сервера. Внутренности: Процессор: К1801ВМ1 (совместим по системе команд с заморским LSI-11/03 из PDP-11) с частотой 3 МГц (в БК-0011/БК-0011М — 4 МГц), 32 КБ оперативной памяти и 32 КБ постоянной. Устройством хранения выступал кассетный магнитофон.

Электроника ДВК

Последний на сегодня — вышеупомянутый ДВК (Диалоговый Вычислительный Комплекс), как и БК, архитектурно повторяли PDP-11 американской компании DEC с использованием усовершенствованной элементной базы и однокристальных микропроцессоров. Выпускались в ряде моделей ДВК-1, ДВК-2, ДВК-3 и ДВК-4 (сокращенные названия, полные были вида Электроника Н МС 01100.1).

Характеристики: п роцессоры Микро-ЭВМ Н МС11100.1 или МС 1201 (МС 1201.01) на основе вышеупомянутого К1801ВМ1, 48 КБ оперативной памяти, 8 КБ ПЗУ с интерпретаторами языков BASIC или Фокал, алфавитно-цифровой дисплей 15ИЭ-00-013 или 15ИЭ-00-013-01 ( «Фрязинский дисплей», на таких был разработан Тетрис ) и термопринтер 15ВВП80-002. Серии БК и ДВК выпускались с середины 80-х до начала 90-х годов.

Подписывайтесь на наш нескучный канал в Telegram, чтобы ничего не пропустить.

Ссылка на основную публикацию