Создан умный прибор, печатающий на 3D принтере нарисованные макеты

Технология создания 3D образцов

Всем добрый день!
Я 3D моделированием в различных сферах занимаюсь уже лет 10, а 3D печатью только третий год. Недавно вступил в это сообщество по 3d печати, и посмотрев блок не обнаружил описание общей технологии. Для профессионалов технология понятна, а вот у новичков или интересующихся людей возникает много вопросов. Вот я и решил поделиться своим опытном FDM 3d печати — не судите строго.

Первое с чего я начинаю это с получения исходных данных. Все зависит от задачи это могут быть обычные замеры, фото или 3D скан поверхности.
Приведу пример на базе создания накладки на суппорт.
Самый информативный способ получения данных — отсканировать суппорт. Можно так же сделать фото, а в последствии отмасштабировать в 3D редакторе.

Я использую сканер sense 3d, мне его погрешности хватает для создания качественных моделей.

Далее производим моделирование. Дизайн и редактор зависят от индивидуальных предпочтений. Можно сделать что угодно и в чем угодно.
Вот я построил 3D модель.

Далее нужно подготовить 3D модель к печати. Для этого экспортируем 3D модель в STL файл и открываем с специальной программе – слайсере, которая производит нарезку 3D модели на слои. Я пользуюсь несколькими программами – одна из них Cura – наиболее распространенная. Так же стоит обратить внимание на Simplify3D (она платная), но в ней очень хорошо формируются поддержки, в том числе вручную.

Здесь стоит отметить, что на FDM 3D принтерах можно печатать одним материалом, либо несколькими (как правило это 2 материала). Печать сложной детали с поддержками нависающих частей будет более качественной на 2-х экструдером FDM 3D принтере, когда одним материалом печатается деталь, а вторым поддержки. После печати, поддержки отделяются и на выходе получаем готовую деталь. Так же советую печатать детали для автомашин только ABS пластиком, т.к. он держит температуру, всякие SBS, PLA и т.п. даже летнего солнышка не выдержат — плавяться.
Это все нужно учесть в слайсере при подготовке детали к печати. Ну и конечно не стоит забывать по параметры 3D принтера: размер стола, температура стола и сопла и т.п.

Когда сформирован файл 3d модели, в большинстве случаев это *.Gcode можно начинать печать.
Вот несколько примеров:

Приведенные модели напечатаны высотой слоя 0,15 мм. Мое мнение, для качественной печати и оптимального времени печати нужно варьировать слой от 0,1 до 0,15 мм. Печатались детали 16 -18 часов.

После удаления поддержек получаем готовый экземпляр. Далее можно проводить обработку.

Здесь стоит отметить, что процесс/длительность/интенсивность обработки обратно пропорциональна качеству печати. А качество печати зависит от 3d принтера — как правило, чем дороже принтер, тем качественнее 3d печать вы получаете, поскольку в более дорогих моделях применяется:
1) Более качественная механика – это линейность направляющих, отсутствие люфтов, воблинга и т.п.
2) Более жёсткий корпус, например на моем Hori Gold корпус из 2-х мм стали, весит более 20 кг.
3) Закрытая камера – это не маловажно для ABS пластика.
4) Более продуманный конструктив экструдера.
Для домашних целей подойдет принтер из за 15 т.р. но не стоит требовать от него сверх качественной печати. Я общался с многими людьми, которые покупали дешевый принтер, разочаровывались и начинали его апгрейдить, в результате совокупный ценник в разы вырастал.

Процесс обработки как правило состоит из химической обработки и физической обработки. Цель химической обработки лучше склеить слои. Например для ABS деталей, применяют обработки парами ацетона — помещают деталь в герметичную емкость с ацетоном и нагревают. Если так сильно не заморачиваться, то можно поверхность детали обработать ацетоном.

Далее можно шкурить, красить и т.п. В результате можно получить очень качественную деталь.

Зачем дома 3D-принтер: варианты использования, цена печати

Как это работает?

Начнем с краткого экскурса в технологию трёхмерной печати и возможности 3D-принтеров. Сейчас все модели на рынке можно условно поделить на две категории: это FDM- и SLA-устройства.

К первым относятся практически все распространенные принтеры — метод FDM (Fused deposition modeling) подразумевает выращивание объекта по слоям из пластиковой заготовки, которая имеет форму прутка. Технология быстро осваивается и развивается, на нее есть спрос. Рынок уже буквально заполонили самые разные FDM-принтеры на любой бюджет, в том числе «сделай-сам» модели, которые собираются пользователем вручную. В общем, 3D-принтеры уже более чем доступны для неспециалистов.

Читайте также:  Скоро появятся смартфоны, способные ремонтировать себя сами

Не так давно стали появляться и SLA-принтеры, которые работают по технологии лазерного спекания, но пока они очень дорогие и на потребительском рынке не пользуются таким большим спросом, как FDM-устройства, поэтому речь дальше пойдет именно о последних.

В качестве заготовок FDM-принтеры используют нити, в основном, из пластика PLA и ABS. Первый более экологичен, второй — более устойчив к нагрузкам. Пластик подается через экструдер на рабочую платформу, там застывает, платформа опускается на высоту этого слоя — и это процесс повторяется снова и снова, пока объект не будет создан полностью.

Проще говоря, чтобы создавать какие-то предметы в домашних условиях, потребуется купить и настроить 3D-принтер, запастись заготовками, после чего найти или сконструировать трехмерную модель объекта, который планируете создать. Если хотите конструировать самостоятельно, многие производители комплектуют свои модели бесплатным ПО. Также существует масса программ для создания 3D-моделей. Если же у вас нет желания этим заниматься — в Сеть выкладывают множество готовых моделей.

Зачем нужен 3D-принтер?

Основное достоинство 3D-печати заключается в том, что благодаря ей практически любой человек может создать в домашних условиях нужную ему вещь. Но серьезный бизнес на основе штампования предметов на 3D-принтере построить сложно, потому что такая печать не заменит серийное производство, как минимум, из-за невысокой скорости изготовления модели. Так что 3D-принтер — это, в основном, инструмент для DIY-задач и поделок: с его появлением у вас дома появляется мастерская, где можно изготавливать самые разные предметы, от настенных крючков до светильников.

Рассмотрим сферы, где 3D-принтер может пригодиться.

Изготовление пластиковых деталей. Особенно актуально это для бытовой техники и детских игрушек — иногда ломаются всевозможные защелки, кнопки, шестерёнки, ручки и т.д., и не всегда эти детали можно легко заменить. На 3D-принтере можно без проблем напечатать такую же деталь или даже лучше. Причем «вырастить» реально и подвижные детали, и состоящие из нескольких частей.

Хобби. Энтузиасты печатают на 3D-принтере и приспособления для рыбалки, и детали для моделирования самолетов, машин, кораблей, и фигурки из мира анимэ и компьютерных игр. С распространением принтеров, способных создавать объекты в нескольких цветах, коллекционеры стали активнее осваивать 3D-печать.

Игрушки. Это непочатый край для тех, у кого есть дети. 3D-принтер выручит в любых ситуациях — сломалась любимая игрушка, нужна дополнительная посуда в детскую кухню, наборы для сюжетных игр, требуются новые аксессуары к детской железной дороге. А к Новому году, например, можно создавать вместе с детьми елочные игрушки и тематические украшения для дома.

Предметы быта. Это одна из самых популярных областей применения 3D-печати — пользователи изготавливают ручки, крепежи, полочки, крючки, приспособления для полива. Если зайти на любой ресурс, где люди делятся друг с другом моделями, можно почерпнуть очень много идей, которые раньше даже не приходили вам в голову. Например, умельцы изготавливают ручки для комодов с местом для подписей, где что лежит, держатели для телефона в душе и даже подставки для рожков с мороженым.

Запчасти для транспортных средств. Актуально для владельцев автомобилей, мотоциклов, велосипедов и другого транспорта. Часто для создания спроса производители выпускают уникальные запчасти для своей техники, которые поставляются под заказ. Ничего не мешает печатать на 3D-принтере вышедшие из строя шестеренки в механизмах автомобиля, например, в приводе стеклоподъемника, всевозможные кронштейны, колпачки для дисков, штуцеры, элементы салазок люка, узлы креплений дворников и т.д. Это позволит сэкономить не только бюджет, но и время.

В последнее время 3D-принтеры стали использовать для кастомайзинга автомобилей и мотокастомайзинга: люди печатают для них декоративные элементы, не несущие большую нагрузку.

Образование. Отечественные производители 3D-принтеров периодически организуют программы по внедрению этой технологии в школы и даже обучают учителей работе с трехмерной печатью. Вполне возможно, что через несколько лет в каждой школе уже будут классы с 3D-принтерами, на которых будут создаваться образовательные проекты, демо-материалы и модели чего угодно.

Пока же можно создавать дома модели вместе с ребёнком-школьником, заодно обучая его пространственному мышлению. И, конечно, с помощью трехмерного принтера печатать проекты, прототипы и наглядные модели могут сами преподаватели, а также студенты.

Профессиональное использование трехмерного принтера в домашних условиях — удел архитекторов, дизайнеров и представителей других креативных профессий. Архитекторы создают модели зданий и прочих объектов, художники — объекты инсталляций, модельеры — аксессуары и элементы одежды, фотографы — вспомогательные приспособления и редкие запчасти. Конечно, медицинские протезы или подобные сложные объекты на бытовом принтере «выращивать» никто не будет — здесь уже нужен высокоточный профессиональный агрегат.

Читайте также:  Двойная стиральная машина Samsung

Аксессуары для гаджетов. Это то, что чуть ли не первым делом печатает новоявленный владелец 3D-принтера — чехлы и подставки для смартфонов и планшетов, холдеры для пультов, кнопки, крепления и многое другое. Во-первых, это просто, во-вторых, полезно, ну а в-третьих, готовых проектов в Сети очень много.

Сувениры. Различную сувенирную и бизнес-продукцию выгодно печатать на 3D-принтере частным предпринимателям. Это фирменные эмблемы, брелоки, корпуса для флэшек и т.д. Кроме того, трехмерная печать позволяет с легкостью создавать несложную бижутерию и даже оправы для очков.

Это основные идеи домашнего использования 3D-принтера, которые уже обкатаны пользователями. Разберемся, что нужно учесть перед тем, как завести дома такого «питомца».

Сколько это стоит?

Разброс цен на сами принтеры очень велик — от 10 000 рублей до бесконечности. Сюда надо добавить цену расходников, поэтому перед покупкой принтера важно определиться с целями печати, нужен он вам просто для развлечения или же вы преследуете более серьезные задачи. Также советуем заранее обдумать объем загрузки девайса и функции, которые вам понадобятся (например, поддержка многоцветной печати сразу же делает принтер значительно дороже).

3D-принтер начального уровня Anet A8 поддерживает даже печать из дерева и нейлона, а стоит от 10 000 рублей

Помните, что Kit-наборы для самостоятельной сборки принтера могут грешить нестабильным качеством печати, а иногда к этому добавляется неустойчивая рама. Бывает целесообразно не заказывать принтер у китайских продавцов, а переплатить и поддержать отечественного производителя, который предоставляет адекватную техподдержку, постоянные обновления ПО и гарантийное обслуживание.

Отечественный 3D-принтер PrintBox3D 270 PRO с сервисным обслуживанием в РФ. Средняя цена — 155 000 рублей

Выбор, как уже было сказано, среди принтеров огромный, а средняя цена агрегата для домашнего использования — около 100-150 тыс. рублей. Часто производитель комплектует принтер стартовым набором с расходниками, что тоже немаловажно.

ПО для создания трехмерных моделей обычно идет в комплекте с принтером или скачивается бесплатно – во всяком случае, новичку точно не надо платить за покупку базовых программ. Так же бесплатно скачиваются и готовые проекты моделей.

Что касается расходных материалов, то нити пластика ABS, PLA, HIPS, нейлоновая нить и т.д. стоят от 1 рубля за грамм — цена зависит от производителя. Например, фирменные катушки от Makerbot стоят примерно 6-7 рублей за грамм, и одна катушка такого PLA-пластика массой 900 г обойдется в 6700 рублей.

Грубо говоря, 10-граммовая ручка для комода обойдется вам минимум в 10 рублей, чехол для смартфона — в 15-20 рублей и т.д. Умельцы вообще обходятся без покупки картриджей и делают их сами из пластиковых отходов при помощи специального оборудования, но в него тоже надо вложиться. Многое зависит, опять же, от целей печати — если создаете что-то с повышенной прочностью, то лучше серьезно подойти к выбору материала и потратить на него чуть больше.

Также помните, что при FDM-печати понадобится постобработка деталей. Придется обзавестись, как минимум, растворителями и наждачной бумагой, а при высоких требованиях к внешнему виду конечной модели потребуется виброинструмент.

Как работает 3D-принтер

И что можно на нём напечатать.

За последние пару лет появилось много новостей о том, что кто-то что-то распечатал на 3D-принтере:

Давайте разберёмся, как работает эта технология, какие у неё ограничения и за ней ли будущее.

Для чего нужен 3D-принтер

3D-принтеры печатают объёмные вещи из пластика или других материалов. Их можно использовать в быту или производстве. Например, вот что можно напечатать на 3D-принтере:

Корпус для батареек. Светодиодную лампу на шарнирах. Лампу в стиле Minecraft. Модель старинного замка.

Как это работает

Обычно для печати 3D-принтер использует специальный пластик. Он бывает в виде порошка, жидкой смолы или пластиковой проволоки в катушках. Именно из этого материала и будет состоять напечатанная деталь.

Дальше, если говорить грубо, процесс выглядит так:

  • этот пластик либо наносят с помощью подвижного сопла;
  • либо «запекают» с помощью лазера;
  • либо из массива готового материала вырезается лишнее с помощью подвижного резака (но это уже больше похоже на токарное дело и к 3D-печати часто не относят).

Материал принимает нужную вам форму слой за слоем. Когда все слои пройдены, получается деталь.

Ускоренная съемка 3D-печати с помощью подвижного сопла:

Читайте также:  Официальный онлайн-магазин Infinix открывается на Tmall

Из-за того что принтеру нужно постоянно нагревать пластик, 3D-принтеры печатают не очень быстро: на деталь размером с телефон может уйти 15–20 минут. Ещё скорость зависит от толщины слоя: чем толще слой, тем быстрее печать. Но при большой толщине слоя деталь может получиться неаккуратной: будут видны слои:

Чем тоньше слой, тем более ровной получается поверхность при печати.

Технологии печати

3D-печать очень нужна в промышленности и промдизайне, поэтому существует целый зоопарк технологий печати, у каждой свои преимущества и недостатки.

Стереолитография. Вместо пластика здесь используется специальная смола, которая застывает на свету. Деталь тоже формируется слоями, но сами слои почти незаметны — смола заполняет рельеф и деталь кажется единым целым даже с очень близкого расстояния.

Синтез полимеров (SLS). При такой печати используется порошок, который потом запекается лазерным лучом. Так как лазерный луч можно сфокусировать в любом месте с нужной точностью, то таким способом печати можно получить очень сложные модели с высокой детализацией:

Polyjet. Особенность этой технологии в том, что в ней можно печатать объекты одновременно из разных материалов. Это позволяет создавать практически любые вещи самой сложной формы, которые сразу обладают нужными свойствами. На таком принтере можно напечатать даже кроссовки, которые можно носить:

Что можно напечатать

На 3D-принтере можно напечатать всё что угодно, если у вас есть подходящий материал для печати, готовая модель и достаточно большой принтер.

Прототипы. Часто перед началом производства компании нужно понять, насколько удобной получится вещь в использовании. Чтобы не запускать линию ради одного изделия, его печатают на 3D-принтере и смотрят, что нужно изменить или доработать. На таких прототипах можно заметить, например, что кнопки получились слишком маленькими и их будет неудобно нажимать или что кнопки оказались очень далеко от пальцев и до них нужно будет специально тянуться.

Запчасти и детали. Иногда найти запчасть от какого-то инструмента сложно или почти невозможно: производитель их не выпускает или модель давно снята с производства. В этом случае можно найти в интернете трёхмерную модель нужной детали или нарисовать её самому в редакторе, чтобы потом отправить это на печать.

Медицина. Трёхмерная печать активно используется в медицине для создания новых суставов, тканей и лечения пациентов. Отличие от традиционной печати в том, что вместо пластика там печатают специальными «живыми» растворами, которые взаимодействуют друг с другом и ведут себя как настоящие органы и ткани. Благодаря такой технологии сейчас легко напечатать сустав, который хирург может поставить человеку вместо повреждённого.

Хобби и моделирование. На 3D-принтере легко печатать разные миниатюры, коллекционные фигурки и модели.

Производство других роботов. 3D-принтеры пока не умеют производить сервоприводы и микропроцессоры, но уже умеют печатать корпуса и каркасы роботов.

Дома и здания. Берём здоровенные рельсы с моторами и контроллерами. Устанавливаем подвижное сопло, на которое можно подавать строительную смесь (бетон или полимеры). Можно печатать стены зданий. В отличие от традиционных технологий строительства из кирпича, панелей и блоков, форма стен и здания в целом может быть любой. Фундамент, перекрытия и крыша пока что не печатаются, но это пока.

Представьте: отправляем на Марс полсотни 3D-принтеров на подвижной основе. За год каждый из них печатает ещё по 100 принтеров. Далее все эти 5 000 принтеров разъезжаются по Марсу и начинают строить первую колонию. Пока они строят, мы заказываем в Икее мебель, оформляем доставку, и как раз к моменту доставки наши роботы всё допечатают. Яблони на Марсе вряд ли зацветут, а вот пятиэтажки — могут.

Критика и проблемы

❌ Медленно и без гарантий: печать довольно медленная, недостаточно точная. Огромная проблема в любительских принтерах — брак. Например, деталь может отклеиться от подложки прямо во время печати, и произойдёт ад. Или моторы раскалибруются, и сопло начнёт промазывать мимо нужных мест.

❌ Низкая эффективность: чтобы напечатать деталь 10 × 10 см, нужен принтер размером как минимум 50 × 50 см, который будет стоить несколько сотен долларов.

❌ Не самые прочные материалы: 3D-печать пока что ограничена пластиками и смолами. Есть отдельные технологии печати на базе металлического порошка, но если вам нужна стальная деталь — вам нужен не 3D-принтер, а нормальный токарь и станок. Но на станке можно сделать не всякую деталь.

❌ Не всегда понятно зачем. В промышленности 3D-принтеры используют для прототипирования, но в массовом производстве эти технологии не используются. Для домашнего применения тоже неясно: на 3D-принтерах печатают маленькие пластиковые штучки для любительских проектов… и всё. Очень мало случаев, когда обычный человек мог бы захотеть напечатать у себя дома что-то применимое в хозяйстве.

Читайте также:  Представлена новая модель электромобиля Cooper с улучшенными характеристиками

Что дальше

Дальше технология победит все проблемы младенчества и будет печатать вам еду, мебель и внутренние органы. Необязательно при нашей жизни, но наши дети и внуки наверняка застанут.

Как создать модель для печати на 3D-принтере: 30 видеоуроков

Печать на 3D-принтере — процесс достаточно простой, если соблюдать правила работы с разными типами материалов и с конкретными моделями принтеров, но — со своими тонкостями. Чтобы избежать непредвиденных затруднений в процессе печати, следует тщательно проработать 3D-модель до загрузки файла на 3D-принтер.

Читайте нашу новую статью, чтобы узнать — как создать с нуля 3D-модель для 3D-принтера, и каких ошибок следует избегать.

Содержание

  • Какие файлы необходимы для 3D-принтера?
  • Программы для 3D-моделирования
    • Видеоуроки по Fusion 360
    • Видеоуроки по SolidWorks
    • Видеоуроки по Компас 3D
    • Видеоуроки по Blender
  • Конвертация чертежей онлайн
  • Ошибки, которые необходимо предотвратить при 3D-моделировании
    • Добавление поддержки
    • Толщина стенок, диаметр отверстий
  • Итоги

Какие файлы необходимы для 3D-принтера?

Большинство фотополимерных 3D-принтеров распознают STL-файлы. STL — это формат файла, изначально разработанный компанией 3D Systems для печати предметов методом стереолитографии. STL-файлы описывают только геометрию поверхности трехмерного объекта без какого-либо представления о цвете, текстуре или других атрибутах модели. Слайсеры различных моделей 3D-принтеров поддерживают файлы распространенных форматов OBJ, 3DS, а также проприетарные (FORM, PLG).

Создать STL-файл трехмерной модели можно в CAD-программе или при помощи 3D-сканеров RangeVision, ручных 3D-сканеров Einscan и т.д. Не следует путать файлы STL и Gcode. Файлы STL содержат 3D-объект, а Gcode-файл — это составленный слайсером код управления 3D-принтером. Многие производители 3D-принтеров предоставляют тестовый файл в формате .gcode, чтобы пользователь мог сразу испытать новое оборудование. Но как поступить, если необходимо создать проект для 3D-принтера с нуля? Рассмотрим популярные программы, которые дают возможность разработать сложные предметы для разных методов 3D-печати.

Программы для 3D-моделирования

Готовить модели для 3D-печати можно в различных программах, предназначенных для работы с трехмерными объектами. Хотя принцип моделирования объектов во всех программах схожий, существуют различия в подходе к решению задач. Можно использовать профессиональные приложения для отрисовки 3D-рендеров (The Brush, Autodesk Maya и 3ds Max и другие), приложения для инженеров (Fusion 360, Autodesk Solidworks Blender, Компас 3D), а также существуют программы, которые оптимизированы для работы с небольшими 3D-объектами (Sketchup). Выбор ПО зависит от привычек пользователя, поскольку от особенностей интерфейса зависит удобство использования программы. Рассмотрим часто встречающиеся примеры ПО для 3D-моделирования.

Видеоуроки по Fusion 360

Fusion 360 — это профессиональная многофункциональная программа, предназначенная в том числе для создания 3D-моделей для 3D-принтера. Несмотря на обширные возможности, интерфейс программы достаточно понятный. Более того, многие функции меню имеют визуальные подсказки, по которым легко ориентироваться. Программа Fusion 360 позволяет сразу конвертировать разработанную для 3D-печати модель в формат .STL, то есть получить готовый файл для печати. Одно из достоинств этого ПО — наличие условно-бесплатной версии.

На следующем видео показано, как в программе создать модель, на примере опоры-кронштейна для лампы:

В конце следующего длинного видеоролика показано, как на основе чертежа создать 3D-модель станины:

Пример того, как составить 3D-модель рукоятки ножа, используя обычную фотографию, можно увидеть в ролике:

Достаточно сложный пример: проектирование кулона в виде Ленты Мёбиуса, процесс пошагово показан в 14-минутном видео:

Автор канала Make Anything опубликовал получасовой ролик о создании в Fusion 360 квадратной тарелки и высокой вазы. Бонусом автор прикрепил в описании к видео ссылку на готовые stl-файлы этих предметов.

В следующем видео показано, как в Fusion 360 спроектировать составную деталь с шарниром, на примере зажима:

Adafruit Industries сделали 18-минутное видео, в котором показали, как в Fusion 360 наносить объемный рисунок на боковые стенки предметов. В примерах показаны как повторяющиеся симметричные паттерны, так и сложные асимметричные узоры:

Видеоуроки по SolidWorks

Программа SolidWorks имеет русифицированный интерфейс, что может быть удобно, в частности, при создании обучающих курсов по 3D-печати в школах. Меню программы не перегружено пунктами. Разобраться в приложении достаточно просто даже начинающему специалисту.

В следующем примере показано, как спроектировать в SolidWorks переходник для колков гитары:

Читайте также:  Установлен временный запрет на выпуск новой криптовалюты Дурова

На видео ниже показано, как спроектировать в SolidWorks изогнутую трубу с фланцами:

Моделирование опорной детали для различных инструментов — тема следующего ролика:

Чтобы смоделировать болт с правильной аккуратной резьбой, необходимо знать несколько трюков в SolidWorks. На канале My Digi Pro объяснили, как выполнить работу быстро:

Если вам необходимо строить объекты сложной формы, вам поможет разобраться в программе большой получасовой видеоурок:

Создайте шестеренку сложной формы. Сделать это вам поможет короткий видеоролик:

Видеоуроки по Компас 3D

Компас 3D — это профессиональная программа для создания 3D-объектов любой сложности. Вероятно, из-за ориентации на профессиональное CAD-моделирование, интерфейс программы получился довольно сложным: с большим количеством пунктов меню и обширными возможностями для настройки.

Если вы только начинаете осваивать Компас 3D, потренируйтесь на моделировании обычного ящичка:

Модель гайки представлена на следующем видео:

Порядок моделирования зубчатого колеса с использованием чертежа:

Подгонка и сборка шарнирного соединения на 3D-модели показана в следующем видео:

Пример сравнительно сложной детали, винта кулера, показан в этом ролике:

Видеоуроки по Blender

Blender — профессиональная программа, которая предназначена для создания сложных трехмерных объектов, в том числе анимированных. Интерфейс программы может показаться достаточно сложным для новичка, но в Интернете можно найти достаточно обучающих материалов по созданию 3D-моделей с ее помощью. Интерфейс программы русифицирован.

Начать освоение Blender можно с моделирования держателя полки (для фиксации на стене):

Поскольку Blender — это полноценный графический редактор, в программе можно создавать сложные арт-объекты. В туториале показано, как за час создать оригинальную модель, у которой будет фактурная поверхность и множество выразительных деталей:

Еще один арт-объект, но на этот раз — абстрактная модель ламы. Отрисовка такой модели занимает существенно меньше времени:

Головной убор для косплея:

Подготовка файла Blender для 3D-печати, пример — серьги-секиры:

Создание 3D-модели осевого держателя на основе чертежа:

Крючок с креплением для стенда с инструментами:

Создание модели сундучка с нуля:

Конвертация чертежей онлайн

В последние годы на рынке появляются и альтернативные методы 3D-моделирования. Например, немецкая компания CAD Schroer разработала комплекс из компьютерной программы MEDUSA4 Personal и онлайн-платформы CSG eSERVICES, которые позволяют превратить чертеж в трехмерный объект с сохранением в STL-файл. В десктопном ПО MEDUSA4 Personal пользователь открывает файл с двухмерным чертежом и запускает через пункт меню Model Reconstruct моделирование 3D-объекта. Сохраненный трехмерный объект в MOD-файле необходимо конвертировать онлайн в STL-файл. Единственным недостатком сервиса является оплата за каждую конверсию поштучно.

Ошибки, которые необходимо предотвратить при 3D-моделировании

Начинающие пользователи обычно приобретают FDM- или SLA/LCD-принтеры начального уровня. В FDM для печати используется пластиковый филамент. В SLA и LCD, фотополимерных технологиях печати — жидкая фотополимерная смола. FDM-принтеры доступнее, а фотополимерные принтеры позволяют создавать гораздо более сложные и детализированные объекты. Рассмотрим самые распространенные ошибки, совершаемые пользователями при подготовке модели к печати.

Добавление поддержки

При создании сложного объекта следует учесть, что участки модели, которые “висят в воздухе”, не могут быть напечатаны без создания поддержек. Поддержки — печатающиеся вместе с моделью опорные конструкции, которые удаляются после завершения печати. Во многих программах поддержки можно создавать автоматически и изменять вручную.

При использовании FDM-принтера с двумя экструдерами поддержки можно печатать из растворимого материала, например — поддержки из HIPS с деталью из ABS, поддержки из PVA с деталью из PLA. Такие поддержки легко удаляются с помощью растворителя, без риска повредить модель в процессе ее очистки от них.

Толщина стенок, диаметр отверстий

При создании легкого ажурного объекта пользователь может ошибиться и создать слишком маленькие отверстия, либо слишком тонкие стенки изделия, которые принтер не сможет воспроизвести корректно. Данная ошибка в большей степени характерна для FDM-моделей, однако и при работе с фотополимерными необходимо учитывать рекомендованные производителем параметры стенок и отверстий.
Мы рекомендуем моделировать стенки объектов с толщиной не менее двух диаметров сопла, для FDM-принтера, а для фотополимерных — не менее полмиллиметра.

Итоги

Как видно из приведенных примеров, процесс моделирования 3D-детали для печати на 3D-принтере легко освоить без прохождения длительных дорогостоящих курсов. В современной информационной среде достаточное количество бесплатных и, что важно — весьма содержательных и простых для понимания обучающих видео. Также в самообразовании может помочь чтение тематических форумов, участие в сообществах 3D-печатников, где принято помогать новичкам и объяснять неочевидные и сложные нюансы.

Купите 3D-принтер в Top 3D Shop и присоединяйтесь к сообществу мейкеров-3D-печатников — людей, самостоятельно создающих полезные и интересные вещи.

Читайте также:  Система искусственного интеллекта будет тестировать аккумуляторы

Безопасно ли печатать двигатели самолетов на 3D-принтере

В 2015 году в Австралии ученые из университета Монаша собрали двигатель, целиком напечатанный на 3D-принтере:

Это не единичный случай. Boeing и Airbus давно занимаются аддитивными технологиями — когда 3D-принтер изготавливает деталь послойно, ориентируясь на компьютерную модель. Например, в каждом пассажирском лайнере Boeing 787 есть около 30 деталей, напечатанных по такому алгоритму, а в Airbus A350 и A320neo — целый титановый кронштейн, который соединяет крылья с двигателем.

В 2016 году компания Airbus показала первый в мире полностью напечатанный на 3D-принтере самолет Thor. Он, конечно, больше похож на авиамодель: длина — 4 м, вес — 21 кг, управление — дистанционное.

Россия не отстает. В 2020 году в Казани протестировали самолет с двигателем, напечатанным на 3D-принтере. Легкий беспилотник пролетел на высоте 170 м и двигался со скоростью 150 км/ч. В России печатают и более масштабные детали — например, для нового лайнера МС-21 и вертолета К-226. Их создают на ферме 3D-принтеров Центра аддитивных технологий «Ростеха».

Как печатают детали

В «Ростехе» детали печатают из металла — но в виде порошка с определенными свойствами и размером гранул. При этом каждый 3D-принтер предназначен для определенного вида металла и печатать на другом материале не может.

Сначала устройство внутри принтера наносит на специальную платформу слой металлического порошка. Затем лазер, работающий по заранее установленной программе, нагревает и сплавляет этот слой порошка, из-за чего он затвердевает. Затем платформа, на которой происходит выращивание, опускается на толщину слоя, и все повторяется. Так происходит несколько раз — слой за слоем. В зависимости от размера детали, процесс длится от нескольких часов до нескольких дней.

Плюсы 3D-печати

  • Детали становятся легче. Это важно в авиастроении: сэкономленный вес можно использовать, например, для дополнительных пассажирских или багажных мест.
  • Экологичность. При создании деталей традиционным способом нужный элемент вырезают из куска металла, а остальное выбрасывают. Во время работы на 3D-принтере отходов практически нет.
  • Создание форм, которые невозможно воспроизвести другими способами.
  • Быстрая скорость создания деталей.

Стоит отметить, что на 3D-принтере вряд ли когда-нибудь будут печатать детали, которые дешево и быстро изготавливаются с помощью стандартных технологий.

Принтер-гигант и принтер-ремонтник

Не все 3D-принтеры предназначены для одних и тех же действий. Так, например, в Центре аддитивных технологий «Ростеха» есть большой 3D-принтер, способный напечатать детали размером до полуметра. Такие использует Boeing: компания использует напечатанные титановые компоненты двигателей на пассажирском самолете Dreamliner 787.

При этом самолет — не единственное, что можно будет создавать на 3D-принтере. Например, стартап Relativity Space хочет в 2021 году запустить на орбиту первую в мире ракету, полностью напечатанную на 3D-принтере. И это не какие-то мечтатели, грезящие о звездах: они уже привлекли $700 млн инвестиций, а значит, в проект верят.

Другой интересный объект — принтер-ремонтник. Он способен не только печатать детали по заданной программе, но и ремонтировать их. Работает эта машина немного иначе: по технологии прямой печати металлом.

Этот механизм состоит из двух основных элементов. Первый — источник лазерного излучения, второй — специальное сопло, через которое в струе инертного газа подается порошок. Струя газа и лазерный луч фокусируются в одной точке, где и происходит плавление порошка — и рост детали. Принтер позволяет ремонтировать сломанные части, а не выбрасывать их. При этом деталь не теряет своих исходных свойств.

Чтобы починить деталь, ее надо отсканировать. Другой вариант — задать управляющую программу, где есть 3D-модель этой детали со сломанным участком. Однако чаще всего используют 3D-сканер, который позволяет получить точный образец детали, которая уже есть. На основе этой модели разрабатывают управляющую программу по ремонту.

Для чего нужен 3D-сканер

Именно 3D-сканер проверяет качество всех деталей для самолетов, которые создали на 3D-принтере. Все они должны быть безупречны.

Кроме того, технология дает возможность делать конструкции, которые нельзя создать стандартными методами — например, кронштейн. Он бы состоял из нескольких частей и, соответственно, пришлось бы делать несколько механообработок, сборочных операций. Все это отнимает время, а 3D-сканер дает возможность ускорить процесс.

Нейронет – идеальное будущее или киберпанк, который мы заслужили

  1. Главная
  2. Технологии

Рано или поздно человек подключит свой мозг к интернету и будет управлять устройствами вокруг себя мыслью. Появится универсальная среда, в которой люди смогут «общаться» через нейронные связи – нейронет.

Читайте также:  Электромобили теперь будут заряжаться за 10 минут

Что такое нейронет

Нейронет – следующий этап развития интернета и информационных технологий. Сейчас мы живём на этапе Web 3.0, где интернет перестал быть сетью только внутри компьютеров и вовлечён во внешнюю среду: чтобы общаться с клиентами не нужно приезжать в офис, покупать одежду можно онлайн, а тот, кто ловит такси на обочине, выглядит просто странно.

Нейронет – это Web 4.0, то есть этап, на котором интернет-технологии не встроены в окружающий мир, а являются его частью. Он усилит умственные способности аналогично тому, как экзоскелеты увеличивают физические .

В простом объяснении, нейронет – это то самое научно-фантастическое будущее: кофеварка утром включается от мысли, что надо взбодриться, а смартфон отправляет месседж вашей подруге, когда вы подумаете о ней.

История нейронета

Дуглас Энгельбарт – один из первых исследователей человеко-машинного интерфейса и изобретатель компьютерной мыши.

Идеи о том, что кибернетика, роботы и компьютеры должны усилить интеллект человека, появились в середине XX века. Один из первых идеологов Дуглас Энгельбарт – создатель компьютерной мыши. Он ввёл понятие «экзокортекса» – внешней системы, которая помогает человеку обрабатывать информацию. В 1973 году понятие конкретизировалось до определения «нейрокомпьютерный интерфейс» – взаимодействия типа «мозг-компьютер».

Нейронет – также идея о создании единого глобального мозга. В 1930-х она появилась в научной фантастике («Мировой мозг» Г. Уэллса) и в философии.

Французский философ Эдуард Леруа рассуждал, что все сознания сложатся в общее, а советский и американский физик Валентин Турчин – что это один из вариантов бессмертия человечества.

Зачем нужен нейронет

Нейронет упростит взаимодействия во всех сферах жизни: образовании, медицине, развлечениях, политике, благотворительности. Люди будут легче понимать друг друга и тратить меньше времени на передачу информации.

Задача нейронета – сделать каждого гением. И сделать это не через его частное развитие, а через объединение навыков разных людей.

Это можно описать через метафору. Если три человека будут стоять по разные стороны от слона, а четвёртый будет с закрытыми глазами трогать его за хобот, то все увидят разную картину. Чтобы составить полное представление, им нужно подойти друг к другу и поделиться своими мыслями. Это долго.

Нейронет объединит этих людей через виртуальных агентов (компьютеры, чипы, программы) и позволит моментально обменяться опытом.

Реальный мир значительно сложнее слона, но нейротехническая связь – инструмент, который поможет познавать его коллективно.

Как работает нейронет

Во время развития такой сети человечество пройдёт эти этапы:

  • Сначала данные будут передаваться от тела или мозга человека виртуальному агенту: компьютеру, системе, нейросети, программе или чипу. Агенты будут анализировать физиологические и психические реакции, речь, движения, привычки. Голосовые помощники «Алиса» или Siri тоже агенты. Они уже «усиливают» человека и помогают ему решать задачи.
  • Затем люди станут взаимодействовать через агентов друг с другом. Будут быстрее договариваться и обмениваться информацией, больше узнавать. Чтобы передать информацию по цепочке «мозг-компьютер-мозг» нужны интерфейсы ввода (фиксируют данные в мозгу) и вывода (передают данные на другой мозг). Для этого надо вживлять в тело электронные импланты, а в будущем главным проводником, возможно, станет незаметная «умная пыль».
  • После начнут объединяться в группы, где можно «обсуждать» общую тему: продукт, идею, изобретение, технологию, конфликт, творческий проект. Здесь виртуальные агенты поддерживают мышление, хранят результаты, объединяют ресурсы каждого.
  • Далее группы начнут взаимодействовать между собой: моментально передавать опыт от одного сообщества другому. Отдельный человек не взаимодействует с членами других или даже своей группы лично, но имеет доступ к базе знаний. Он становится коллективным гением, мастером, специалистом.

В результате появится пространство общего разума, в котором традиционные «медленные» инструменты общения (мысли, жесты, слова) не нужны.

Этапы развития нейронета: как он поменяет жизнь

Первый этап (2015 – 2025)

Предварительный этап нейронета – это биометрия. На нём мы находимся сейчас: изучаем биометрические данные, считываем их, храним или обрабатываем, носим трекеры, сканируем и распознаём движения, жесты, лица. Это подготовка «железной» составляющей нейронета.

Согласно дорожной карте «Нейронет» от проекта НТИ (Национальная технологическая инициатива), этап биометринета закончится примерно в 2020-2022 годах. После него начнётся создание информационных систем, которые обрабатывают не только биометрические данные, но и нейроинформацию (мысли, эмоции, ощущения).

Пока готовых проектов нейроинформационного обмена нет – мы ещё учимся передавать сигналы от мозга к мозгу и к компьютеру.

Читайте также:  Xiaomi представила портативный вентилятор с автономностью 13 часов

Второй этап (2025 – 2035)

Первых успешных рабочих систем в этой сфере ждут в 2025-2035 годах. Тогда нейроинтерфейсы проникнут в человеческое тело и станут незаметными. Системы дополненной реальности будут передавать звуки, запахи, тактильные ощущения, а не только картинку.

Учёные смогут дублировать многие системы организма (иммунную, нервную, кровеносную) и воссоздавать психические состояния (автоматические стимуляторы состояний). Можно быстро расслабиться или наоборот ввести себя в состояние повышенной концентрации.

Люди станут быстрее обмениваться эмоциями и получать знания. С иностранцами можно общаться без знания языка – чипы будут транслировать перевод сразу в мозг.

Появится рынок продажи устройств, аксессуаров и программ для нейронета. Дешевизна систем перенесёт его в бытовую жизнь. Это станет таким же стандартом, как покупка смартфона или регистрация в социальной сети.

Третий этап (2035 – 2045)

После 2035-2045 года настанет время полнофункционального нейронета. Чтобы не испытывать стресс от работы человек может искусственно конструировать нужное сознание – комбинировать разные психические ощущения в одно. Например, обострять память, повышать активность нервной системы и при этом чувствовать равнодушие и спокойствие.

От такого моделирования мозга люди перейдут к моделированию целых коллективов, которых объединит одинаковое мышление и психика. Они соединят свои усилия и сделают один большой «мозг» (социальность сознания). Появятся первые нейросообщества и прецеденты между ними.

В нейроколлективах будут передавать опыт друг другу – физический, эмоциональный или даже боевой опыт можно получить искусственно.

Угрозы и риски

Главная угроза, о которой говорят противники нейронета, во внедрении технических устройств в человеческое тело – «чипировании». Это нужно для обмена данными с другими людьми, но многие видят в этом желание правительства организовать тотальную слежку и контроль за народом.

Страх перед государственным контролем достоин отдельного обсуждения. Но не стоит забывать, что большинство из нас уже имеет длинный цифровой след в сети и редко задумывается о его доступности. Мы делаем его сами через смартфоны, умные устройства и свои интернет-копии: электронные почты, аккаунты в соцсетях или на сайтах.

Маркетологи знают, в какой магазин вы ходите и какие статьи читаете, а государственные системы – по какому маршруту ездите на работу и где проводите выходные. Это звучит страшно, но на практике не так ужасно: мы готовы жертвовать приватностью в пользу комфорта.

Остальные угрозы нейронета:

  • Угроза внешнего управления людьми, в том числе злоумышленниками. Отсутствие неприкосновенности частной жизни.
  • Расслоение общества из-за недоступности технологий для некоторых групп. Элита станет сверхлюдьми, а более низкие сословия биороботами, которые их обслуживают.
  • Нейрохакинг – взлом сети для распространения вредной информации, вирусов.

Каждый из этих вопросов обширен, но стоит помнить, что нейронет больше расширяет возможности человека, чем ограничивает.

Развитие всей сети не произойдёт в один день – по мере её появления мы будем сталкиваться со сложностями и решать проблемы безопасности . Тем более, что такая система открывает возможность коллективного противодействия угрозам.

Кто делает нейронет?

Нельзя сказать, когда именно человечество начало развивать эту идею. Технологии сами собой толкают нас к нейронету:

  • Предприятия хотят, чтобы производство автоматически подстраивалось под потребности рынка.
  • Люди – чтобы трекеры подсказывали, сколько выпить воды или пройти шагов.
  • Рынок – чтобы большие данные рассказали, какая реклама и в какое время будет эффективнее возле станции метро «Новокосино».

Решения для удовлетворения всех этих желаний разрабатываются каждый день. Они и создают кибернетический мир, который будет зависеть от мыслей, а не нажатий на кнопки.

Нейронет в России и мире

Государственные проекты по развитию нейротехнологической среды работают в Америке, Европе, Азии и России. Правительства хотят получить технологические преимущества друг перед другом.

  • В России работает отраслевой союз «Нейронет» , поддерживаемый президиумом Совета при Президенте РФ.
  • В США такие проекты финансирует DARPA (Управление перспективных исследовательских проектов Минобороны).
  • Евросоюз занимается проектами Human Brain Project и BNCI Horizon 2020.
  • В Азии крупнейшие проекты ведут Китай (China Brain Project) и Япония (Brain/MINDS Project).

Нейрочип Neuralink: действительно ли мы будем вживлять гаджеты в мозг

Видео презентации

В августе 2020 года Neuralink провела первую презентацию нейрочипа — интерфейса между мозгом и компьютером.

В августе 2020 года Neuralink провела первую презентацию нейрочипа — интерфейса между мозгом и компьютером. А уже в апреле 2021-го ученые показали, как макака играет в видеоигру благодаря импульсам, подаваемым в вживленный в ее мозг чип. РБК Тренды разбираются, как устроена передача сигнала от мозга к машине и почему это важно.

Читайте также:  В Индии открылся крупнейший завод компании Samsung

Что такое Neuralink?

Neuralink — это проект Илона Маска, который стартовал в 2016 году. Компания занимается разработкой специального прибора, который способен передавать сигналы мозга по Bluetooth. Это позволит управлять компьютером или смартфоном напрямую, при помощи мозговых импульсов.

Впервые прибор показали в июле 2019-го.

Предполагается, что капсула-приемник будет крепиться за ухом, как слуховой аппарат. От нее к мозгу будут идти нитевидные электроды. Всего в мозг имплантируют до 1500 электродов, каждый из которых в 4 раза тоньше человеческого волоса. Один процессор величиной 4 х 4 мм обрабатывает информацию с 10 тыс. электродов. Кабель USB-C обеспечит максимальную пропускную способность для передачи данных.

Зачем нужен Neuralink?

Главная задача Neuralink — расширить возможности людей, в первую очередь тех, кто страдает неврологическими заболеваниями. По словам Маска, аппарат позволит контролировать гормоны, справляться с тревожностью и даже сможет заставить мозг работать эффективнее. Также чип позволит передавать музыку прямо в мозг. Люди смогут слушать музыку на тех частотах, которые обычно недоступны для нашего слуха, и даже общаться телепатически.

Операция по вживлению нейрочипа будет роботизированной и не сложнее, чем лазерная коррекция зрения, обещают ученые Neuralink. Первые испытания, по словам Маска, уже прошли на крысах и обезьянах и закончились успешно. Чтобы провести тесты на людях, нужно получить разрешения от Министерства здравоохранения США.

Маск делает ставку на то, что расширение возможностей человеческого мозга позволит не только справляться с тяжелыми заболеваниями, но и конкурировать с искусственным интеллектом. Компания пыталась выйти на нейролаборатории России и Китая, но это оказалось невозможным из-за политики и законов США.

Что показали на презентации?

На второй публичной демонстрации Neuralink Илон Маск рассказал подробности о проекте:

Обновленный нейроинтерфейс называется Link. Он выглядит как монета и с 2019 года стал заметно меньше — 23 х 8 мм — и производительнее. Число электродов для передачи информации от нейронов мозга уменьшилось с 3072 до 1024. Это все еще не последняя версия;

Чип вживляется под кожу и подключается к мозгу. Всю операцию совершает робот-хирург, который просверливает отверстие в черепе и подсоединяет электроды. По словам Маска, операция безболезненная и не требует анестезии. Пациент может покинуть клинику в тот же день. После имплантации не остается никаких следов, а владелец не ощущает чип как инородное тело;

В качестве доказательства на презентации показали двух свиней (еще одна осталась за кадром), которые успешно перенесли имплантацию за 2 месяца до мероприятия. На экранах демонстрировали показатели мозговой активности, которые передавали чипы: как свиньи реагируют на окружающие предметы, прикосновения и еду;

Link считывает данные в мозге и соединяется с различными устройствами по Bluetooth на расстоянии до 10 метров. В будущем чип сможет не только считывать, но и записывать информацию: это пригодится для лечения заболеваний;

Чип считывает информацию гораздо быстрее, чем ПК: задержка составляет меньше наносекунды. Это позволит, в том числе, полноценно двигаться людям с ДЦП и симулировать зрение для слепых;

Заряда нейрочипа хватает на весь день, а ночью он заряжается с помощью магнитного устройства, похожего на Apple Watch. Он рассчитан на десятки лет бесперебойной работы;

Более поздние версии будут поддерживать также управление автомобилями Tesla и игры — например, StarCraft;

Цена чипа будет постепенно снижаться — до нескольких тысяч долларов, включая операцию;

Все тесты Маск оценивает как успешные. В июле 2020 года Neuralink получил статус инновационного продукта от Управления по санитарному надзору за качеством пищевых продуктов и медикаментов (FDA).

Скандал вокруг проекта

За пару дней до презентации в Сети появились неожиданные подробности от одного из бывших сотрудников компании. Он рассказал о конфликте между группой ученых и инженеров.

Главной причиной стали требования Маска ускорить сроки сдачи проекта вопреки всем ограничениям. В итоге тогда проект покинули 6 из 8 научных сотрудников.

Ситуация обострилась из-за неудачных экспериментов над животными. Среди них — подключение 10 тыс. микроэлектродов к мозгу живой овцы и операция на мозге обезьяны. Оба эксперимента проводили с огромным риском для жизни подопытных.

В ответ Neuralink выложила видео, в котором компания показала условия содержания животных и рассказала, что заботится о них и соблюдает все требования.

Что говорят скептики

Пока что рассуждать о достоинствах и недостатках технологии рано: чип еще не испытывали на живом человеке.

Читайте также:  Умные очки Google Glass облегчат жизнь детям, больным аутизмом

Ученые отметили, что новая версия микрочипа заметно лучше предыдущей — и по техническим характеристикам, и по возможностям. Они рассчитывают, что микрочип поможет считывать электроволны мозга и лучше понимать природу неврологических заболеваний.

С другой стороны, на создание окончательной версии подобного устройства может уйти гораздо больше времени, чем обещают в компании Маска. Человеческий мозг устроен очень сложно, и любое некорректное вмешательство может ему навредить. Чтобы расшифровать всю информацию, которую передает наш мозг, нужно гораздо больше знаний о нем — и это главная проблема.

Назвать все это технологической революцией тоже сложно: аналоги нейрочипов вживляют уже десятки лет — например, пациентам с болезнью Паркинсона или травмами позвоночника.

Нейрочип вместо джойстика

9 апреля 2021 года Neuralink показала видео с макакой, которая играет в видеоигру при помощи вживленного в ее мозг чипа:

Чип, вживленный девятилетней макаке Пейджеру за 6 недель до этого, подключили к игровой приставке. Сначала Пейджер играл при помощи джойстика, загоняя объект в оранжевый квадрат. Потом исследователи убрали джойстик и откалибровали нейрочип. Они начали подавать на игровое устройство сигнал, смоделированный по данным, которые поступают из мозга через чип. При этом отсутствовала разница, то есть с помощью чипа — буквально силой мысли — можно управлять объектами. Чип также работает в связке с iPhone по Bluetooth.

Однако научным прорывом это назвать нельзя. Игру в «Понг» силой мысли показали еще 10 лет назад, а 6 лет назад удалось добиться, чтобы парализованный человек управлял протезом при помощи мозга:

Никаких научных данных об исследованиях и эксперименте Neuralink не публикует.

Главная заслуга компании — в том, что команде удалось сделать чип малоинвазивным и создать полностью беспроводной интерфейс. Илон Маск обещает, что до конца 2021 года Neuralink перейдет к испытаниям на людях.

Что еще можно подключить к мозгу?

Ученые и биотехнологи давно разрабатывают протезы, которые бы могли заменить отдельные участки мозга. Это необходимо при инсультах или заболеваниях мозга — таких как рассеянный склероз, деменция, болезнь Альцгеймера или Паркинсона.

Итог этих разработок — нейропротезы двух типов:

  • Роботизированные — управляются электродами, которые имплантируют в мозг. Их вживляют тем, кто полностью парализован и не может управлять своим телом;
  • Те, в которых электроды присоединяют к оставшимся нервным окончаниям утраченной конечности. Они помогают людям, которые лишись руки или ноги.

Впервые подобный протез представил в 2012-м невролог Теодор Бергер из США. Правда, испытания проводились только на крысах.

Самый простой протез, который взаимодействует с мозгом — это слуховой аппарат с имплантом, который используют с 1960-х годов. Он использует нейронные связи между ухом и мозгом.

Еще одно важное направление — создание нейропротезов, которые помогут создать новые нейронные связи вместо утраченных. Они посылают нужные сигналы и тренируют мозг, — как тренируют человека, который заново учится ходить после травмы. Это помогает и при тяжелых болезнях, и при проблемах с памятью.

Есть отдельные случаи того, как пациентам вживляли нейроинтерфейсы — или их прототипы — чтобы компенсировать утраченные функции:

Например, 53-летняя парализованная американка, которая, с помощью имплантов в мозге, научилась управлять роботизированной кроватью.

Испанец Нил Харбиссон утратил способность различать цвета. Ему вживили специальную камеру, преобразующую цвет в звук и отправляющую информацию во внутреннее ухо

Американец Натан Коупленд получил серьезную травму позвоночника. С помощью нейрочипа он научился управлять искусственной рукой и даже протянул ее Бараку Обаме на встрече.

Однако все это единичные примеры, и в массовое производство такие интерфейсы не поступали.

Недавно ученые открыли биосинтетический материал, который можно вживлять в мозг человека, чтобы соединить его с искусственным интеллектом. В отличие от многих других, он не отторгается тканями и не оставляет видимых повреждений. Возможно, именно его будут использовать для будущих «киборгов».

На создание действующих нейроимплантов, которые помогут восстанавливать поврежденные участки мозга, ученые отводят еще около 10 лет. Зато импланты, которые используют и расширяют возможности здорового мозга, как мы видим, уже есть. Возможно, с их помощью совсем скоро мы будем управлять не только компьютером или смартфоном, но и всеми устройствами вокруг нас.

Ссылка на основную публикацию